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Abstract

Decades of intensive fertilizer application have led to the accumulation of phosphorus (P) in
soils across US cropland. This over-application can have negative consequences for water
quality, but a portion of the accumulated P in soils can serve as a substitute for increasingly
costly future fertilizer applications. We investigate whether it is economical for farmers to
utilize bioavailable legacy soil P stocks (by reducing P fertilizer use) when they are imperfectly
observed and soil sampling is costly. Using 5 years of legacy P measurements from maize field
trials spanning over a decade in eastern North Carolina, we develop a dynamic programming
model of this optimization problem, with farmer decision-making and economic optimization
specified as a ‘partial-observability Markov decision process’ (POMDP). In a novel contribution
to the POMDP literature, we analyze how agent preferences over risk and intertemporal substi-
tution affect optimal monitoring and resource use by incorporating an Epstein-Zin preference
structure. Using contemporary computational methods for analyzing POMDPs, we find that
more risk-averse optimizing agents in the model apply less fertilizer, across a range of bioavail-
able legacy P stocks. In sensitivity analysis we find that agents are sensitively response to both
sustained increases in P fertilizer price (which is a fully observed stochastic state variable in the
model) and to decreases in monitoring costs. We discuss the implications of these findings for
policy discussions seeking to address environmental externalities of P fertilizer by providing
better and cheaper information to farmers about their legacy P soil stocks.
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1 Introduction

Economically efficient management of the agricultural nutrient phosphorus (P) a critical global

challenge for ensuring sustainable food production and environmental quality protection. P is

imbalanced in the global food system, and some regions lacking sufficient access to synthetic

or organic P fertilizers that could boost yields and rural incomes, leaving producers to rely on

limited P stocks in nutrient-deficient soils (Zou et al. 2022). In the United States (and in other

advanced economies) the main social challenge in P management is the excessive application of

P fertilizer on farmlands, which contributes to water quality degradation and eutrophication in

surface water systems. In addition, there are concerns that the overuse of P fertilizers in advanced

economies depletes mineral stocks and increases prices. However, as illustrated in Figure 1, P

fertilizer consumption by US farmers has remained relatively stable over the last few decades

and has evidently responded only temporarily to recent and persistent price increases, suggesting

relatively price inelastic demand for P in US cropping systems (Denbaly and Vroomen 1993).

Notably, unlike nitrogen fertilizer, P fertilizer application residuals after crop take-up can

accumulate in soils. This accumulating soil stock of P – referred to as ‘legacy P’ – can be

stored in non-bioavailable reserves, taken up by future crop plantings, or mobilized by subsequent

precipitation events, flowing into water bodies. A significant amount of agricultural land in the

US has accumulated legacy P stocks over decades of continuous cultivation application of P from

synthetic and organic sources (for example, annually, > 1,000 tonnes of P have been accumulated

in the agricultural region of Vermont) (Wironen et al. 2018, Ringeval et al. 2018). Phoshorus runoff

into surface water bodies catalyzes eutrophication, which can lead to hypoxic ‘dead zones’ and

greenhouse gas (GHG) emissions (Arrow et al. 2018, Conley et al. 2009, Iho and Laukkanen 2012,

Rabotyagov et al. 2014, Paudel and Crago 2020). Downing et al. (2021) estimate a substantial

economic cost associated with GHG emissions from eutrophication in freshwater system globally.

Various policies have been proposed to mitigate environmental issues arising from the overuse

of P fertilizers, including the Numeric Nutrient Criteria under Clean Water Acts and Binational

Phosphorus Reduction Strategy in Lake Erie (US EPA 1995, Lake Erie LaMP 2011), with one

notable proposal focusing on incentivizing farmers to substitute legacy, soil-bound P stocks for P

fertilizer and to reduce P fertilizer applications (Sattari et al. 2012, USDA 2020). Properly managed,
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Figure 1: U.S. Phosphorus consumption and phosphorus fertilizer price

Notes: The graph shows the relationship between P fertilizer consumption and P fertilizer prices from 1982 to 2014.
The blue solid line represents P consumption, measured in 1,000 short tons on the left y-axis and the red dashed line
indicates the price of P fertilizer, measured in dollars per short ton on the right y-axis.

bioavailable legacy P stocks can substitute for P fertilizer, reducing costs and environmental impacts

from intensive crop operations (Sattari et al. 2012). However, this policy idea raises the question of

why farmers, in many cases, do not currently utilize legacy P stocks, given their accumulation over

time and the potential cost savings for farmers from doing so? This paradox is more pronounced in

areas with publicly available information on soil P content provided by state Extension services.

This paper studies this question using a model that incorporates biophysical crop production

and legacy P stock dynamics for a representative agricultural system with dynamic farm-scale

management incentives and behavioral factors to simulate P stock dynamis in a setting of imperfect

information on legacy P bioavailability, market uncertainty, and risk aversion. The complexity of

managing legacy P stocks poses significant challenges for farmers and the economic benefits of

different strategies recommended by agricultural extension are uncertain. Recent analysis suggests

that farmers may not fully account for these residual P stocks in their P fertilizer application

decisions due to a lack of high-quality information and the inherent uncertainty about the quantity

and bioavailability of legacy P stocks across their farmland. When accounting for farmer risk
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aversion, the uncertainty surrounding legacy P could contribute to its under-utilization. This paper

explores how these factors affect the intertemporal dynamics of legacy P stocks and utilization, and

examines whether improved access to enhanced (and higher cost) monitoring of legacy P stocks

could reduce P fertilizer application.

To address the management of legacy P accumulated in soil and its losses to surface water,

previous studies have analyzed the optimization of fertilizers in farmland along with P control or

conservation policies. Schnitkey and Miranda (1993) analyze the optimal steady-state application

of fertilizer under various policy settings which limit the soil P level. Goetz and Zilberman (2000)

examine the intertemporal and spatial optimal application of mineral fertilizer levels given P

concentrations in bodies of water associated with agricultural land for optimal lake restoration

policy. Innes (2000) explains that environmental impact of nutrient runoff from livestock production

can be mitigated by regulating facility size, implementing waste policies based on cleanup costs, and

combining fertilizer taxes with subsidies for manure spreading equipment. Lötjönen et al. (2020)

provide a theoretical spatial modeling framework to study climate and water policies for P mineral

and manure fertilizer use in dairy farm management. While the models in these studies account

for optimal fertilizer usage decisions to manage P accumulation in soils and to reduce P loss to

the surface water, they do not incorporate the observational uncertainty related legacy P, and thus

cannot answer the question we address here.

Farmers in the US do typically have some baseline information about soil P, as US farmers

commonly employ standard soil sampling, provided by state agencies or extension services and

by private soil testing service laboratories at nominal fees. These tests can help gauge legacy P

availability, among other soil health metrics. Soil tests are usually conducted at a few spots within

fields, offering preliminary insight into soil P content, and serving as noisy indicators of the actual

bioavailable legacy P stock across a field (Austin et al. 2020). While more comprehensive sampling

options exist, offering clearer information on legacy P heterogeneity across a field, they come at a

higher cost, presenting a trade-off between accuracy and expense (Austin et al. 2020, Gatiboni et al.

2022).

Economically, this situation can be described as one in which the agent – here, the farmer

– optimizes their utilization of an uncertain resource stock – here, legacy P – in which they

may dynamically update their beliefs about these fluctuating stocks based on costly monitoring.
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Generically, this situation represents a common class of problems in the resource management

literature, referred to as a ‘partial-observability Markov decision process’ or POMDP (Clark 2010,

Fackler and Pacifici 2014, Fackler 2014). Previous applications of POMDP models and extensions

in resource management have included invasive species control (Haight and Polasky 2010, Rout

et al. 2014, Kling et al. 2017), forestry (Sloggy et al. 2020), environmental conservation (White

2005), erosion prevention (Tomberlin and Ish 2007), and infectious diseases (Chadès et al. 2011).

To our knowledge POMDP methods have yet to be applied either in a depletable resource

context or in farm production economics (though Sloggy et al.’s forestry application is adjacent to

such a setting), reflecting one contribution of this paper. Previous agricultural economics studies

have addressed the partial observability and monitoring problem using more heuristic optimization

methods that separate inference about unobserved state variables from the optimization. For

example, Fan et al. (2020) employ such an approach using state-space models to analyze efficient

monitoring of an agricultural pest, but they specifically note the theoretical superiority of a POMDP

approach for their application were it not for the computational difficulty of these methods.

Additionally, as far as we are aware, agent risk preferences have not previously been included

in POMDP applications, at least in agricultural or resource economics. It is natural to conjecture

that risk aversion could strongly affect demand for synthetic alternatives to the uncertain resource,

monitoring, and the utilization of uncertain stock resources. Our analysis of that general conjecture

represents another contribution. Because standard discounted expected utility in dynamic economic

models conflates preference parameters for risk aversion and intertemporal substitution, we employ

a widely used recursive utility Epstein-Zin specification to disentangle these effects in our analysis

(Epstein and Zin 1991).

We develop our model’s empirical foundation through econometric analysis of North Carolina

field data on legacy P abundance, stock accumulation, fertilizer application, and yield response in a

corn-farming context spanning over a decade. We also account for stochastic crop and P fertilizer

price dynamics, which we jointly estimate using publicly available USDA data. This extends

the model into what is known as a ‘mixed-observability Markov decision process’ or MOMDP

(Kovacs et al. 2012, Sloggy et al. 2020). Inclusion of these dynamics increases the robustness of our

analysis, given that previous studies show that stochastic price dynamics have important effects on

other dynamic farm resource management problems, such as crop rotation and cover crop planting
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(Livingston et al. 2015, Chen 2022).

Including all the elements described above is a significant computational challenge. In par-

ticular, POMDPs involve stochastic dynamic programming in which the agents possess belief

states that specify their current subjective probability distributions about imperfectly observed

biophysical states, with these beliefs states updated via Bayes’ Rule. The specification introduces a

high-dimensional state space (i.e. a space of probability distributions) that imposes considerable

challenges to numerical computation. To address these challenges, we closely follow recently

applied density projection methods (e.g. Zhou et al. 2010, Springborn and Sanchirico 2013,

MacLachlan et al. 2017, Kling et al. 2017, Sloggy et al. 2020) that reduce the dimensionality of the

belief states, while avoiding some of the restrictions and pitfalls of prior methods (e.g. use of conju-

gate priors or coarse discretization of the unobserved state). We also use an econometric approach

in estimating price dynamics that aids numerical tractability in the MOMDP optimization that is

still informed by the empirical analysis: We first econometrically estimate a Markov-switching

Vector Autoregressive (MSVAR) model for the price dynamics (supported by statistical tests), and

then in the dynamic programming impose a conditional, within-regime equilibrium assumption

maintain computational tractability.

We find that optimizing farmers in the model generally employ enhanced soil sampling only at

low levels of estimated legacy P stocks. Higher risk aversion generally decreases the reliance on

fertilizer application in favor of legacy P stocks. Meanwhile, farmer preferences for profit smoothing

over time do not appreciably affect optimal fertilizer use or monitoring. Furthermore, sensitivity

analysis with much higher fertilizer prices (e.g. from a sustained global market disruption or a tax

on fertilizer) or much lower monitoring costs (e.g. from a subsidy for more intensive soil testing)

induce much substitution from fertilizer to legacy P use. These results raise questions about the

potential effectiveness of proposed price-based instruments to correct externalities associated with

agricultural fertilizer.

This paper’s sections proceed as follows. First, a model of legacy P dynamics and crop

production is described, capturing both the accumulation and bioavailability of legacy P. Next,

the economic and management problems are discussed, outlining how farmers can evaluate the

recursive expected utility of their controls, P fertilizer application, and soil sampling in the face

of stochastic prices and the unobservable state of legacy P. Then, the methodological framework
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and specification are presented, including price dynamics and the density projection approach for

managing Bayesian belief updating. The application of this model to the corn market provides

a practical example of how it can be used to guide decision-making in agriculture. Finally, the

results of the model are discussed and are integrated with Epstein-Zin preferences, highlighting

the implications of risk preferences in shaping farmers’ P fertilizer application and soil sampling

decisions.

2 Model Description and Computational Methods

A simplified schematic of our POMDP model is shown in Figure 2, with the biophysical dynamics

of legacy P stocks Lt at the top level of the figure. The farmer does not observe Lt but receives

signals Ot that depend on past soil sampling st−1, illustrated in the middle level of the figure. Farm

production decisions regarding fertilizer applications Ft and realized profit πt are also determined

at this level. The bottom-level of the figure illustrates farmer inference regarding their unobserved

legacy P stocks Lt, with beliefs bt being updated based on the signal Ot. The following subsec-

tions describe the structure and equations for each of these components, as well as the economic

optimization problem to be solved.

2.1 A Model of Stochastic Legacy Phosphorus Dynamics

We use a deterministic model of legacy P dynamics from Iho and Laukkanen (2012), to which we

add stochastic behavior. The average soil-accumulated legacy P stock per hectare is given by Lt,

with its dynamics specified in the following recursive equation:

Lt+1 = ρtLt + (γ1 + γ2Lt)

[
Ft −

Concentration on Yield︷ ︸︸ ︷
(γ3 log(Lt) + γ4)Y (Lt, Ft)

]
︸ ︷︷ ︸

Legacy P Surplus

(1)

where ρt is a ‘carry-over’ parameter of legacy P, Ft represents the amount of P fertilizer input,

and Y (Lt, Ft) is the crop yields at time t. The terms (γ3 log(Lt) + γ4) defines the legacy P

concentration of the crop yield, which increases logarithmically with Lt. As Lt increases, the legacy

P concentration also rise, initially leading to augmented yields. However, despite ongoing increases
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Figure 2: Schematic of Partially Observable Markov Decision Process

Notes: The farmer infers their unobserved legacy P stock Lt through observations Ot and updates their belief state bt.
Phosphorus fertilizer application Ft and soil sampling st influence both the state transition Lt+1 and future
observations Ot+1.

in Lt, the marginal yield gains attribute to each additional unit of legacy P progressively diminish.

The term (γ1 + γ2Lt) is explain the change in legacy P brought about by a unit surplus or deficit in

legacy P balance (Ekholm et al. 2005). The parameter values of γ are summarized in Table 5.

While there are several empirically-grounded ways to introduce stochastic behavior in this

model, we focus on stochastic transport into the environment, owing to precipitation and other

environmental factors. In a deterministic model, a carry-over parameter ρt < 1 implies a decay of

soil phosphorus stock on farmland in the absence of further fertilizer inputs, or a loss of soil-bound P

to surface water systems (Ekholm et al. 2005, Iho and Laukkanen 2012). We introduce stochasticity

into legacy P dynamics by specifying this carry-over parameter as:

ρt = exp

[(
µρ −

σ2
ρ(Lt)

2
+ σρ(Lt)Wt

)]
, with Wt ∼ N (0, 1), (2)

where µρ is the log-mean of ρt (so that E[ρt] = expµρ) and σρ(Lt) is the standard deviation of log

µρ, with σρ(Lt) specified as potentially a function current stocks Lt. We assume µρ < 0, so that the

legacy P stock available for crop uptake stochastically decays without added P fertilizer Ft.

Note the log-normal distribution of ρt means that a fixed standard deviation σρ would result
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in the conditional variance of the annual change in legacy P stocks from growing without bound

as Lt grows (i.e. limLt→∞Var(Lt+1|Lt) = ∞), which is not biophysically realistic. Following

previous studies that have dealt with similar issues (Loury 1978, Gilbert 1979, Melbourne and

Hastings 2008, Sims et al. 2017, Sloggy et al. 2020), we therefore specify the log standard deviation

as a decreasing function of the stock. Specifically, in our main specification, we assume that the

portion of the stock carried over to the next period (ρtLt) has a fixed variance ς2, invariant with the

current stock level Lt. This assumption implies the log standard deviation function takes the form

σρ(Lt) =
√
ln(1 + ς2exp(−2µρ)/L2

t ). We investigate the importance of this assumption by also

considering a fixed log standard deviation (σρ(Lt) = σ̄) in the Appendix.

2.2 Soil Sampling and Partial Observability

Legacy P is not perfectly observed, but farmers in the model receive information through soil

sampling. We consider two kinds of soil sampling: standard sampling (ss) and point sampling

(ps). Standard sampling, typically provided by state agencies or extension services at nominal fees,

involves collecting samples from a few spots within fields. These tests offer preliminary insights

into soil P content but serve as noisier indicators of the actual bioavailable legacy P stock across a

field (Austin et al. 2020). Point sampling, on the other hand, involves collecting multiple samples at

specific grid points or random locations within grid cells, providing more precise information on

legacy P bioavailability, but at a higher cost (Austin et al. 2020, Gatiboni et al. 2022).1

To specify the observation process, we denote the current soil sample test result as Ot. As a

noisy measure of legacy P across the whole hectare of farmland, we assume a multiplicative test

error λ which is zero truncated and normally distributed with variance σ2
s determined by the type of

sampling s ∈ {ss, ps} (Kling et al. 2017).

Os
t = λstLt, where λst ∼ T N (1, σ2

s). (3)

The information gained from point v. standard sampling is captured by the assumption that

1We exclude the no sampling case in our main analysis because in practice, commercial farmers in the US almost
always conduct at least standard sampling, which is offered by state agencies for a nominal fee. This was confirmed in
a more elaborate version of the model, which allowed for a no-sampling option: When the sampling cost is negligible,
then intuitively the farmer would always acquire the almost-free information.
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σss > σps. In principle, truncation also implies that for a small enough (but positive) level of legacy

P relative to the test error variance σ2
s , the soil test may find zero soil P, which is physically possible

though highly uncommon (suggesting generally good test accuracy).

The farmer’s beliefs about the distribution of legacy P are denoted by the pdf bt(Lt), representing

a subjective probability distribution over the unobserved Lt, conditional upon the history of controls

and resulting observations (Kling et al. 2017). Bayesian updating of these beliefs combines each

period’s prior beliefs regarding Lt, with projected dynamics for Lt+1, along with new information

Os
t+1, via the following:

bt+1(Lt+1) ∝ p(Os
t+1 | Lt+1, st)

∫
p(Lt+1 | Lt, Ft)bt(Lt)dLt (4)

with a given b0(L0) specifying the prior beliefs about initial stocks and where p(Os
t+1|Lt+1, st) is

the conditional pdf of the observation. The Markovian properties ensure that the next period beliefs

only depend on the current beliefs, controls, and information gained in the current period. Figure 2

illustrates how the farmer updates their belief state bt based on their soil sampling decision st and

resulting soil test result Os
t .

2

2.3 Economics and Management

Annual payoffs in the model are evaluated as the profit determined by crop yields and stochastic

prices. Formally, the expected (partial) profit is specified as the per hectare production function

Y (Lt, Ft) and stochastic prices:

π(Lt, Ft, P
Y
t+1, P

F
t , st) = P Y

t+1Yt(Lt, Ft)− P F
t Ft − csst, (5)

where P Y
t+1 and P F

t are prices for the crop and P fertilizer, respectively, and cs is a soil sampling cost

(with css < cps), and st ∈ {ss, ps} reflects the soil sampling decision at time t. Fertilizer application

decisions are based on the observed fertilizer price P F
t at the time of application, whereas the

2In principle, in addition to soil test results, farmers could infer the adequacy of their soil P stocks through observed
yields (e.g. by observing yields when no fertilizer is applied). Modeling belief-updating with this additional information
source is significantly more complicated. However, we did undertake this effort, the results of which - shown in the
Appendix - suggest that at least in our application such a yield signal provides very little information relative to soil
tests. We thus exclude this additional complication from the main model and results presented here.
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crop price P Y
t+1 will only be realized at the end of the season and not yet observed at the time

of applying fertilizer. This means that the decision to apply fertilizer is informed by the current

fertilizer price and the last harvest’s crop price. Dynamics for the prices Pt = [P Y
t , P

F
t ] are assumed

to be determined by a joint Markov process, such that Pt+1 = G(Pt, ϵt) where G(·) is a transition

function and ϵt is a vector of price shocks driven by macroeconomic conditions or short-term

exogenous shocks. We discuss the specific structure used for these dynamics below in econometric

estimation for our application.

A risk-neutral farmer agent with no preference for profit-smoothing over time and a fixed

discount rate would seek to maximize the expected net present value (ENPV) of their profits. For

an agent with an infinite time horizon (or a stochastic time horizon with a constant hazard rate of

termination), the Bellman equation characterizes the maximal ENPV as a function V (St) of the

observed state variables collected in St ≡ [bt(·), P Y
t , P

F
t ], and can be written as follows:

V (St) = max
F,s

Π(St, Ft, st) + βE
{
V (St+1) | St, Ft, st

}
, (6)

where β is the discount factor and Π(St, Ft, st) are expected end-of-season profits given currently

observed states and actions:

Π(St, Ft, st) ≡
∫∫

π(Lt, Ft, P
Y
t+1, P

F
t , st)f(P

Y
t+1 | P Y

t , P
F
t )bt(Lt)dP

Y
t+1dLt (7)

where f(P Y
t+1|P Y

t , P
F
t ) is conditional pdf of crop price P Y

t+1 at the upcoming harvest, given the last

observed harvest price P Y
t and current fertilizer price P F

t .

In this paper, we are interested in studying how risk and intertemporal preferences affect optimal

monitoring of the unobserved state of legacy P, Lt. To do so, we generalize the above Bellman

equation via the commonly used Epstein-Zin recursive preference structure. Originally developed in

the macro-finance literature to allow nontrivial risk premiums in empirically-defensible capital asset

pricing models (Epstein and Zin 1989), this preference structure has since been applied in dynamic

agricultural production-inventory models (e.g. Lybbert and McPeak 2012), valuation of ecological

insurance (Augeraud-Véron et al. 2019), and in integrated assessment models for evaluating the

economic damages from climate change (Cai and Lontzek 2019). The key advantage of Epstein-Zin

preferences is that they disentangle risk aversion from preferences for intertemporal smoothing,
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which are conflated in expected discounted utility models. For our purposes, this allows us isolate

how risk aversion versus intertemporal smoothing preferences affect optimizing agents’ demand for

monitoring.

The Bellman equation for the recursive expected utility function, given Epstein-Zin preferences,

is as follows:

VEZ(St) = max
F,s

[
(1− β)ΠEZ(St, Ft, st)

1−ψ−1

+ βE
{
VEZ(St+1)

1−η | St, Ft, st
} 1−ψ−1

1−η

] 1
1−ψ−1

,

(8)

where ΠEZ(St, Ft, st) is the certainty-equivalent expected utility of end-of-season profits:

ΠEZ(St, Ft, st) ≡
(∫∫

π(Lt, Ft, P
Y
t+1, P

F
t , st)

1−ηf(P Y
t+1 | P Y

t , P
F
t )bt(Lt)dP

Y
t+1dLt

) 1
1−η

(9)

and where η and ψ indicate, respectively, the coefficient of relative risk aversion (RA) and the

elasticity of intertemporal substitution (EIS): Higher η and ψ correspond respectively to greater

risk aversion and a weaker preference for intertemporal smoothing, with η = ψ−1 reducing EZ

preferences to the expected discounted utility preference structure and η = ψ−1 = 0 (ψ = ∞)

reducing the EZ Bellman equation to Bellman eq. (6) for the risk neutral agent with perfectly elastic

intertemporal substitution.3

2.4 Computational Methods: Density Projection and Particle Filtering

Note that one of the state variables in the above dynamic program is the continuous belief pdf

bt(·), which makes the model computationally intractable in its current form. Various methods have

been proposed to address this common problem in POMDPs and related adaptive management

applications, the simplest of which is to specify an initial prior belief pdf b0(·) that is conjugate

to likelihood function, so that b1(·), b2(·) and so for bt(·) remain in the same family (e.g. normal

distribution). This reduces the belief state from an infinite dimensional continuous pdf to a low-

dimensional belief state corresponding to the parameters of that family (e.g. mean and variance

of normal distribution). However, the use of conjugate priors is overly restrictive for most modern

3In this case, the value function in the EZ Bellman equation, VEZ(S) is simply a rescaling of the risk neutral value
function by VEZ(S) = (1− β)V (S).
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resource management problems, particularly in POMDP applications where the dynamics of the

unobserved state variable Lt need to be accounted for in belief updating, via the pdf p(Lt+1 | Lt, Ft)

representing the stochastic transition dynamics.

To address this challenge, we follow the prevailing alternative in the resource economics

literature involving density projection and particle filtering. The full algorithm used here is the

same one employed by Kling et al. (2017) and Sloggy et al. (2020) in other resource management

applications, and for completeness is detailed in the Appendix. In summary, the method first

specifies a parametric distribution family for prior beliefs bt(Lt)- here, a log-normal distribution,

parameterized by a measure of central tendency and uncertainty: We parameterize the log-normal

pdf here by its arithmetic mean µL and coefficient of variation νL. The method then takes the

pdfs for these prior beliefs, the conditional likelihood of the observations p(Os
t+1 | Lt+1, st), and

the transition dynamics p(Lt+1 | Lt, Ft), and uses particle filtering with Bayes’ rule in eq. (4) to

simulate draws from the posterior updated beliefs bt+1(Lt+1). This posterior belief pdf is no longer

log-normal; however, density projection is used to fit an approximating log-normal distribution to

the posterior draws, by minimizing a measure of distance between the approximating pdf and the

true posterior captured in the draws from the particle filter. Density projection uses the Kullback-

Liebler divergence as the distance measure between the approximating and prior pdfs. This results

in the approximating distribution’s distance-minimizing parameters effectively being maximum-

likelihood estimates, treating the particle filter draws as observations. This procedure ensures that

belief-updating only requires updating the mean and coefficient of variation.

This density projection projection procedure is integrated into computation of the dynamic

programming solutions, by first discretizing the belief state parameters and actions (µLt , ν
L
t , Ft, st)

and then calculating the discretized transition probabilities for the next-period belief parameters

(µLt+1, ν
L
t+1). These transition probabilities are pre-computed, before solving the infinite-horizon

Bellman equation using standard value- or policy-iteration algorithms for discrete-state dynamic

programming (see Appendix).
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Table 1: Summary Statistics of North Carolina Tidewater Data

Variable Obs Mean Median IQR SD Min Max

Legacy P (mg/dm3) 139 63.986 46 37–66.75 50 28 279

P application (kg/ha) 139 47.036 22 11–67 53.948 0 168

Corn yield (kg/ha) 139 4751.9 4442 2266.7–6517.9 2950.3 131 13712

Notes: Interquartile Range (IQR) is a measure of statistical dispersion, being equal to the difference between the 75th
and 25th percentiles. It represents the range within which the central 50% of the data lie.

3 Application to Eastern North Carolina Corn Farming and Econometric

Estimation

We apply the model in the previous section to a representative corn production system in eastern

North Carolina. This illustrative case study represents This section describes the econometric

estimation of model parameters for this context. The first subsection describes estimation of the

yield function, and the second describes the joint estimation of US corn and P fertilizer price

dynamics.

3.1 Production function estimation and model parameterization

Estimation of the yield function here uses field trial data from the eastern North Carolina Tidewater

region described by (Morales et al. 2023), which contains measurements of yields, (experimentally

controlled) P fertilizer inputs, and legacy P.

Table 1 provides the summary statistics and evidence of the presence of outliers in the data.

For example, in the Legacy P (mg/dm3), the mean value is 63.986 mg/dm3, while the median is

46 mg/dm3. This large difference between the mean and median suggests the presence of high

legacy P values that are pulling the mean upwards, indicating potential outliers. Additionally, the

maximum value for legacy P is 279 mg/dm3, which is significantly larger than the interquartile range

(IQR) of 37 to 66.75 mg/dm3, further highlighting the presence of extreme values in the dataset.

Similar patterns can be observed in the P fertilizer application and corn yield variables, where the

maximum values (168 kg/ha and 13,712 kg/ha, respectively) are far greater than the IQR ranges,

reinforcing the conclusion that the dataset contains outliers. These outliers can influence the results
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of traditional mean based methods, justifying the use of median regression to better capture the

central tendency and heterogeneity of the data without being overly influenced by extreme values

and so we apply median regression modeled as:

ln(Yi,t(Li,t, Fi,t)) = β0 + β1 ln(Fi,t) + β2 ln(Li,t) + β3 ln(Fi,t)
2 + β4 ln(Fi,t) ln(Li,t) + ωi + ϵi,t, (10)

where i denotes experiment plot, ωi is the experimental replication fixed effect, and ϵYi,t is a time-

varying error component. The experimental replication refers to the distinct replications of the

experiment conducted under controlled but potentially varying conditions across different locations.

Each replication captures the same treatment levels (e.g., P fertilizer inputs), but the replications

themselves may experience variations due to unobserved factors such as subtle differences in soil

properties, localized weather conditions, or small operational differences in how the experiments

were executed. These replications help ensure that the results are not influenced by one-off

conditions specific to a single trial, providing a broader understanding of the treatment effects.

Given that each replication may have its own unique, unobserved characteristics, we include

fixed effects for experimental replication. These fixed effects allow us to control for any unobserved,

time-invariant factors specific to each replication that could bias the results if not accounted for. By

introducing replication-level fixed effects, we can isolate the true impact of the key variables on

corn yield, while filtering out the effects of within-replication variability.

To estimate the parameters in the yield response function, we analyze data covering 5 years

of field experiments (2010, 2012, 2014, 2021, and 2022) at the North Carolina Cooperative

Extension Tidewater Research Station on the coastal plain. These experiments measured legacy P

bioavailability measured by Mehlich 3 method and reported in milligrams per cubic centimeter of

soil (mg/dm3), P fertilizer application (kg/ha), and corn yield (kg/ha).

The results in Table 2 estimate the relationship between corn yield and P fertilizer application

(Fi,t) and legacy P (Li,t), using a quadratic specification. The positive sign for ln(Fi,t) indicates that

increasing P fertilizer leads to higher corn yields, suggesting that more fertilizer boosts productivity.

However, the negative sign for the quadratic term ln(Fi,t)
2 implies diminishing marginal returns to

P fertilizer application. This means that as more fertilizer is applied, the incremental yield gains

begin to decline, reflecting the principle of diminishing marginal productivity commonly seen in

agricultural inputs.
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Table 2: Corn yield estimation

Log Corn Yield (kg/ha)

ln(Fi,t) 0.891**
(0.415)

ln(Li,t) 0.680
(0.696)

ln(Fi,t)
2 -0.0125

(0.0349)

ln(Fi,t)× ln(Li,t) -0.158
(0.154)

Constant 4.891**
(2.401)

Experiment Fixed Effect Yes

Observations 139

Adjusted R-squared 0.419

Notes: Experiment plot clustered standard errors in paren-
theses. The standard errors are adjusted for clustering in
soil sampling plots. *, **, and *** denote significance at
the 10%, 5%, and 1% levels, respectively.

For legacy P (ln(Li,t)), the positive sign suggests that higher levels of legacy P could increase

yields, although this effect is not statistically significant. The interaction term between Fi,t and Li,t

has a negative sign, indicating that when both P fertilizer and legacy P are present at high levels,

they may act as substitutes, reducing each other’s effectiveness. This could imply that as legacy P

increases, the marginal benefit of applying additional P fertilizer decreases, which is consistent with

the concept of nutrient saturation.

3.2 Corn and phosphorus fertilizer prices

To estimate a dynamic model for corn and fertilizer prices, we analyze USDA time series on

corn and P fertilizer prices from 1982 through 2013 (Figure 3). We use P fertilizer (44%-46%

phosphate) price data from the USDA “Fertilizer Use and Price” report and corn price data from the
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Figure 3: Inflation-adjusted corn and phosphorus fertilizer prices

Notes: Inflation-adjusted prices are adjusted using the Consumer Price Index (CPI) for all urban consumer (index
1983=100), with data sourced from the Federal Reserve Bank of Minneapolis (2024.04). The vertical line marks 2007,
where dynamics appear to qualitatively change. The Moderate Price Regime, shown in gray, was estimated based on
the Markov-switching Vector Autoregressive model.

USDA’s “U.S. Bioenergy Table” (USDA 2024a, USDA 2024b), spanning 33-years (1982-2014).

For both empirical reasons and to facilitate MOMDP numerical implementation, we estimate price

dynamics using a MSVAR model. Markov-switching method generalizes the standard multivariate

time-series vector autoregression model by allowing for probabilistic regime transitions in the

regression intercepts and coefficients, in order to accommodate qualitative changes observed in the

nature of the price dynamics (Hamilton 1989). In our application, use of MSVAR is empirically

motivated by observing abrupt and sustained change in corn and P fertilizer price patterns after

ca. 2007, as seen in Fig. 3. Before 2007, the inflation-adjusted prices of both corn and P fertilizer

show a clear decreasing trend, whereas after 2007 corn and P fertilizer prices beginning to rise

significantly. This rise aligns with the global increase in commodity prices more broadly, consistent

with a discrete change in market dynamics.

We thus estimate a log-linear MSVAR specification of of the following form:

lnP t+1 = µ(rt+1) +Φ(rt+1) lnP t + ϵt+1, where ϵt+1 ∼ N (0,Σ), (11)
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Table 3: Markov-switching vector autoregressive model for corn and phosphorus fertilizer prices

Corn (ln(P Yt+1)) Phosphorus fertilizer (ln(PFt+1))

Moderate High Moderate High

ln(PFt ) 0.105*** 0.096*** 0.472*** 0.469***
(0.009) (0.009) (0.011) (0.010)

ln(P Yt ) 0.344*** 0.346*** -0.013 -0.008
(0.010) (0.010) (0.009) (0.009)

µ(St) 0.748*** 1.274*** 0.834*** 1.321***
(0.053) (0.051) (0.053) (0.052)

Variance (Σ11) 0.072 Variance (Σ22) 0.059
(0.0002) (0.0002)

Covariance 0.0165
(Σ12 = Σ21) (0.0001)

Notes: Standard errors are in parentheses. In the estimation, constant variance of residual Σ = Σ(i) = Σ(j) is assumed
for rt ∈ {i, j}, i ̸= j. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

where lnPt+1 is the vector of corn and P fertilizer prices, lnPt+1 ∈ R2 and Φ(rt+1) represents the

autoregressive coefficient that vary depending on the regime rt+1. µ(rt+1) is the regime-specific

intercept, Σ is the covariance matrix of the error terms. In addition, the probability of regime rt+1

can be specified as pij = Pr(rt+1 = i | rt = j) where pij represents the probability of transition

from regime j at time t to regime i at time t+ 1 (Hamilton 1989). We allow for two price regimes

in the model, rt ∈ {moderate, high}, based on visual inspection of the data.

To estimate the MSVAR, we employ a Bayesian approach used by Osmundsen et al. (2021)

to estimate the transition probability of the MSVAR model with two regimes, moderate and high.

In this model, the system can transition between two distinct regimes, each characterized by

different autoregressive coefficient and covariance structures. We estimate the coefficients of the

MSVAR model using a Hamiltonian Monte Carlo (HMC) method implemented via the Stan software

(Osmundsen et al. 2021). Unlike traditional Gibbs sampling, HMC leverages gradient information

to explore the posterior distribution efficiently, particularly in high-dimensional parameter spaces.

This method fits our model, where the posterior distribution may exhibit complex geometry due to

the mixture of regimes and regime transitions.
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Table 4: Transition probabilities of corn and phosphorus fertilizer prices

Corn & P fertilizer (pij)

Moderate (t) High (t)

Moderate (t+ 1) 0.735 0.264
(0.003) (0.003)

High (t+ 1) 0.265 0.736
(0.003) (0.003)

Notes: Regime values of corn and phosphorus fertilizer prices, PY and
PF , for the moderate and high regimes, are the average values of the
regime estimated from the Markov-switching Vector Autoregressive
model results. Specifically, the moderate regime average prices for corn
and phosphorus fertilizer are PY

Moderate = $1.432, PY
High = $2.027 per

bu. and PF
Moderate = $180.530, PF

High = $193.775 per tn.

The likelihood of the model is constructed conditional on the latent state sequence, and prior

distributions are placed on the model parameters, including the autoregressive coefficients, intercepts,

and covariance matrices. Specifically, we use the priors on the intercept µ(rt+1) ∼ N (µµ, σ
2
µ), priors

on the autoregressive coefficients Φ(rt+1) ∼ N (µΦ, σ
2
Φ), and priors on the covariance matrix

Σ ∼ Wishart(I, ν), where I is the identity matrix and ν is the degree of freedom.4

MSVAR results are presented in Tables 3 and 4. The results in Table 3 show that in both regimes,

the next-year corn price is significantly influenced by both the current corn price and the current P

fertilizer price, as indicated by the significant coefficients for ln(P Y
t ) and ln(P F

t ). However, the

next year’s P fertilizer price is only influenced by its own current price, with no significant effect

from the current corn price.

The asymmetry in price dynamics can be attributed to the differing market structures and roles

of corn and P fertilizer. Corn, as a staple commodity, is more sensitive to input costs such as

fertilizer, which directly affects production costs and, consequently, market prices. In both regimes,

the significant effect of P fertilizer prices on future corn prices reflects the pass-through of input

cost changes to agricultural output prices. On the other hand, the P fertilizer market is largely

4The mean (µµ, µΦ) and variance (σ2
µ, σ2

Φ) of the prior distributions are derived from the estimation results of
the Markov Switching Dynamic Regression (MSDR) model, which independently estimates the price process for the
Markov-switching regimes (see Appendix).
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driven by supply-side factors, such as production costs and global demand for fertilizers, rather than

fluctuations in corn prices. This explains why P fertilizer prices are only influenced by their own

lagged values, with no significant impact from corn prices. Table 4 shows, for example, that the

corn price has a 73.5% likelihood of remaining at a moderate regime during the next period given

that the process is moderate during the current period as well as a 26.5% likelihood of moving to a

high regime.

3.3 Values for other model parameters

Values for the remaining model parameters not estimated above are calibrated based on the literature

and expert consultation with extension colleagues, and are presented in Table 5. Parameters for

legacy P dynamics are primarily taken from the deterministic dynamic model of Ekholm et al.

(2005). Because we introduce stochasticity into this model, we also require value for the P dynamics

carryover variance ς2, which we set at ς2 = 9.21 that comes from North Carolina Tidewater

region data, where the variance of legacy P stock when no fertilizer was applied. This variance

reflects natural fluctuations in legacy P levels due to environmental factors such as weather and soil

processes, even without fertilizer input, justifying the use of the variance in the model.

Values for soil sampling costs and precision were based on the following: Standard soil sampling

typically involves collecting one soil sample per 1 hectare, costing around $4 per acre (NCAGR

2024). This assumption follows recommendations that soil samples should be taken from areas

smaller than 20 acres to ensure accuracy and representativeness of the soil’s nutrient levels (USDA

09.2022). Point sampling is recommended at a spacing of 209 feet, where one composite samples

are collected per acre, resulting in approximately 2.47 samples per hectare (Austin et al., 2020).

Thus, point sampling provides more precise information on legacy P bioavailability but is a more

expensive methodology to implement. Based on this information, we assumed that the observation

error variance of point sampling (σp) was smaller than standard sampling (σss > σps), and the cost

was 2.47 times higher than standard sampling (cps = 2.47 · css). The values for the observation

errors are denoted in Table 5. Figure 4 displays the simulation results of legacy P accumulation

(mg/dm3) over 100 years without P fertilizer application, illustrating the range of stochastic paths.5

The solid green line represents the deterministic path with 2% decay rate that assumes no uncertainty
5The results depicted in Figure 4 were generated from 10,000 simulations.
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Table 5: Parameters and description

Value Desccription

Biological Parameters

µρ -0.02 Average rate of growth (Myyrä et al. 2007)

ς2 9.21 Carryover variance

γ1 0.0032
Legacy P balance parameters (Ekholm et al. 2005)

γ2 0.00084

γ3 0.000186 Legacy P surplus parameters
(Iho and Laukkanen 2012, Saarela et al. 1995)γ4 0.003

Economic Parameters

css $4 Standard soil sampling cost per hectare (NCAGR 2024)

cp $9.88 Point soil sampling cost per hectare

β 0.9345 Discount factor with 8% discount rate (Duquette et al. 2012)

σss 0.4 Observation error of standard soil sampling

σp 0.05 Observation error of point soil sampling

Notes: Soil sampling cost varies depending on the institute. This paper uses the North Carolina case (NCAGR 2024, $4
per sample).

in legacy P dynamics. The shaded area represents the range of simulation sample paths from the 5%

to 95% quantile, which becomes broader as the legacy P extends further into the future. Quantile

lines for the 25% (blue dots), 50% (red dash-dots), and 75% (green dashes) show the distribution of

accumulation, with the 50% quantile also indicated as the median path. The black line represents

the average of all simulation results.

The stochastic trend of legacy P dynamics follows closely to the deterministic path, suggesting

that the parameters used in modeling legacy P dynamics and stochasticity do not deviate significantly

from the deterministic trend. This consistency indicates that our model parameters effectively

capture the essential dynamics of legacy P without substantial stochastic deviations. The light blue

shaded area illustrates the variability and uncertainty in legacy P levels due to stochastic factors,

showing a steady decline in legacy P, showing the gradual depletion of P reserves in the soil over

time.
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Figure 4: Legacy phosphorus accumulation without phosphorus fertilizer application

Notes: For the deterministic legacy P accumulation (green solid line), we employ a constant carry- over parameter
ρt = ρ = 0.98 (2% decay rate) as adopted by Myyrä et al. (2007). The initial value is the 90th percentile (108 mg/dm3)
of legacy P in the North Carolina Tidewater data.

4 Model Results

In this section, the solution corresponding to the management model introduced in the previous

sections, including state uncertainty and price stochasticity, is presented.

4.1 Optimal Policy and Dynamics of Legacy Phosphorus

Figure 5 is composed of two graphs, each illustrating the optimal policy based on the bioavailability

of legacy P, uncertainty, and the economic variables of the corn and P fertilizer prices. The horizontal

axis measures legacy P bioavailability (mg/dm3) within a range of 1 to 108 mg/dm3, which captures

most of the data, reflecting the 90th percentile of legacy P levels. The vertical axis represents

uncertainty, as measured by the coefficient of variation (CV) in L beleifs, from 1% to 20%.

The figure illustrates the optimal application of P fertilizer for risk-neutral farmers. When

uncertainty in legacy P bioavailability is high, risk-neutral farmers tend to apply more P fertilizer
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Figure 5: Optimal policy of P fertilizer application and soil sampling

and are more likely to adopt soil sampling. The areas without dots indicate that farmers adopt

standard soil sampling, while the dotted areas show where farmers opt for point sampling. When

legacy P is low, farmers apply more P fertilizer to compensate for the low availability of P, ensuring

sufficient nutrient supply for crop growth. Risk-neutral farmers particularly favor point sampling

when legacy P level is low because it provides more accurate information, essential for making

better-informed decisions about the optimal amount of P fertilizer to improve crop yield.

The perfect observability solution, marked by an asterisk, represents the scenario where farmers

have perfect information about the amount of legacy P. The results for this scenario were derived

using stochastic dynamic programming methods, which allow for optimal decision-making when

the true state of legacy P is fully known. When the Mixed Observability Markov Decision Process

(MOMDP) solution is applied in scenarios with very low uncertainty in legacy P bioavailability,

the outcomes are similar to the perfect observability solution. This similarity occurs because, in

cases of very low uncertainty, the farmer’s belief about the legacy P state becomes highly accurate,

almost equivalent to having perfect information. As a result, the decisions made under the MOMDP

approach closely align with those made under perfect observability, as the need to account for

uncertainty in the belief state diminishes, allowing the farmer to act almost as if they had complete

knowledge of the legacy P levels.

The “×” mark represents the long-run expected belief state, where the process stabilizes over

time. The position of this stable belief state is notably close to the maximum level of legacy P
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Figure 6: Dynamics simulation of stochastic growth

Notes: The initial values for the legacy phosphorus level and uncertainty are 5 mg/dm3 and 10%, respectively. The
initial conditions also include high corn price and high P fertilizer price. The figures were generated from simulations
i = 10, 000. The IQR for a simulation i at time t is calculated as follows:
IQRit =

[
exp(µL

it + σL
itΦ

−1(0.25)), exp(µL
it + σL

itΦ
−1(0.75))

]
where µL

i,t and σL
i,t are the parameters of the belief

state, and Φ−1(·) represents the inverse cumulative distribution function of the standard normal distribution (Kling et al.
2017). In Figure 6, we averaged IQRit over i.

bioavailability and minimum level of uncertainty. This convergence occurs because, over time, the

combination of uncertain legacy P levels and economic incentives encourages farmers to maintain

or even increase legacy P through fertilization. In this scenario, farmers may be incentivized to build

up legacy P reserves in response to price and uncertainty, ensuring that the resource is available for

future production. As the belief system evolves, the tendency is to converge towards maximizing

legacy P availability, as this offers a buffer against uncertainty and ensures higher yields when

prices fluctuate. The process stabilizes when the bioavailability of legacy P reaches its maximum

sustainable level, explaining why the long-term belief state aligns with the maximum legacy P level.

Additionally for the low level of uncertainty in the long-run expected belief state, as the process

progresses, the information available to the farmers about legacy P becomes increasingly reliable.

Over time, as farmers repeatedly observe the outcomes of their actions and adjust their practices,

their belief about the amount of legacy P converges, leading to a reduction in uncertainty. This

steady accumulation of knowledge and the diminishing variability in outcomes mean that farmers

can predict the legacy P levels with a high degree of confidence, resulting in very low uncertainty at

the steady state.

This pattern is expected to be reflected in the dynamic pattern, which further demonstrates the
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farmers’ behavior in response to the legacy P dynamics over time. Figure 6 presents the controlled

dynamics of the belief state and optimal policies over a 200-year period. The first graph in the

figure shows the relationship between legacy P bioavailability over time and the uncertainty around

this legacy P, depicted as the Belief IQR. The IQR visually represents the range between the 25th

and 75th percentiles based on the belief states about the legacy P levels. The black line represents

the mean belief, while the shaded area represents the Belief IQR.

In the early years, when farmers adopt point sampling, the uncertainty (IQR) is very low.

This happens because point sampling provides detailed, precise information about legacy P levels,

enabling farmers to reduce uncertainty more effectively. As a result, their beliefs about the legacy P

levels are more precise, and the Belief IQR remains narrow. However, over time, as farmers shift to

standard soil sampling, the uncertainty increases, causing the Belief IQR to expand. This occurs

because standard sampling provides less precise information, which increases uncertainty about the

exact legacy P levels in the soil. The farmers now have to rely on broader assumptions about the

legacy P content, leading to a larger range in the belief about legacy P bioavailability.

The second graph shows the trend of expected P fertilizer application (kg/ha) over the periods.

At the beginning of the timeline, P fertilizer application is relatively high as farmers to ensure

sufficient nutrient availability for their crops. As the legacy P levels stabilize (as shown in the first

graph), the need for high P fertilizer application diminishes, and farmers apply less fertilizer over

time. The decreasing trend in fertilizer application indicates that farmers are relying more on the

accumulated legacy P, as well as the more precise information gathered from early soil sampling, to

optimize their P application.

The third graph shows the frequency of soil sampling over time, illustrating the shift from point

soil sampling to standard soil sampling. Early on, when farmers are uncertain about the initial

legacy P levels, they rely heavily on point sampling to gather detailed information. Over time,

as legacy P stabilizes and uncertainty reduces, they shift to standard soil sampling, which is less

resource-intensive but provides less precise data. This switch, as seen in the first graph, coincides

with the expansion of the Belief IQR, as standard sampling contributes to greater uncertainty about

legacy P.
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Table 6: Estimated value of risk aversion and elasticity of intertemporal substitution in literature

Literature RA (η) EIS (ψ)

Howitt et al. (2005) California (US) 1.4 0.1

Lybbert and McPeak (2012) Chalbi (Keyna) 0.5 (OLS) 0.7(OLS)
0.8 (IV) 0.9(IV)

Dukana (Keyna) 13.5 (OLS) 2.8(OLS)
12.5 (IV) 3.3(IV)

Augeraud-Véron et al. (2019) 0.5-11 0.1-2

Cai and Lontzek (2019) 10 0.5, 1.5

Daniel et al. (2019) 1.1-15 0.6-1.2

Notes: OLS and IV indicate Ordinary Least Squares regression and Instrumental variables estimation, respectively.

4.2 Risk Analysis: Epstein-Zin Preference

Dynamic programming mapping is an efficient method for solving belief × price MDP by breaking

the optimization problem down into a sequence of subproblems. However, it assumes a risk-neutral

decision-maker. To understand the effects of risk preferences on the legacy P management problem,

we extended our MOMDP model by incorporating an Epstein-Zin preferences (Epstein and Zin

1989).

Since we have no data on farmer risk preference over time in this context that would have

permitted on estimation of η and ψ, we chose the range of estimated parameters from the literature

on environmental and agricultural studies listed in Table 6. What is more important for our analysis

than specific values is the effect of high or low RA and EIS on model results. In the literature,

the RA and EIS ranges are defined as 0.5 ≤ η ≤ 15 and 0.1 ≤ ψ ≤ 3.3, respectively. For our

benchmark parameters, we choose multiple parameters across the ranges from which η = (0.5, 15)

and ψ = (1.5, 3) were selected. In addition to benchmark parameters, the risk-neutral condition,

η = 0, and the perfectly elastic intertemporal substitution, ψ = ∞, are considered. When η = 0

and ψ = ∞, the problem is reduced to the risk-neutral dynamic programming problem seeking to

maximize the expected utilities.

Figure 7 represents the results of Epstein-Zin preference in MOMDP. Risk aversion (η) reflects
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Figure 7: Epstein-Zin preferences and Optimal policy of P fertilizer application and soil sampling

Notes: Initial price regime is high. Other initial condition results are provided in the Appendix.

farmers’ attitudes toward uncertainty and potential losses. As η increases from 0 to 15, the panels

demonstrate that farmers apply less P fertilizer. In the first column (η = 0), which represents a

risk-neutral scenario, farmers apply more fertilizer in areas with low legacy P bioavailability. This

behavior reflects a willingness to invest heavily in fertilizer to maximize yields, without concern for

future risks.

However, as we move to higher levels of risk aversion η = 15, the shaded regions representing

high fertilizer application shrink, particularly in areas where legacy P is more abundant. This is

because risk-averse farmers are more cautious in their decision-making. They are concerned about

potential future losses from over-fertilizing when future economic conditions, such as crop prices or

the actual benefits of the applied fertilizer, are uncertain. In regions of high legacy P bioavailability,

farmers with higher risk aversion apply less fertilizer since they prefer to rely on the existing P in

the soil, reducing the risk of wasted input costs.
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The vertical axis of the figure represents different values of the EIS (ψ). This parameter captures

how willing farmers are to substitute consumption (or input use, like P fertilizer) between different

time periods. A higher ψ value implies that farmers prefer a smoother consumption or input pattern

over time, while lower values indicate that they are more willing to adjust input use based on current

and future conditions. As ψ increases, the panels show that farmers become slightly more responsive

to P fertilizer application, however, there is not much significant change in optimal controls.

5 Economic Sensitivity Analysis

A sensitivity analysis of economic conditions is also important for evaluating short-term productivity

along with long-term agricultural sustainability when optimizing legacy P management using

MOMDP. To understand the impact of varying economic conditions, we show the responses of the

optimal policy to changes in the discount rate and exogenous shifts in P fertilizer price and soil

sampling cost.

5.1 Discount Rate

In economic studies, particularly within agricultural and resource economics, the discount rate

is a critical factor influencing farmers’ decision-making processes. The discount rate essentially

determines how much a farmer values future benefits compared to immediate gains. In addition to

our benchmark discount rate of 8%, Duquette et al. (2012) also revealed that farmers often have

relatively high discount rates, with some groups exhibiting rates as high as 43%, particularly among

late adopters of new technologies, and others showing an average of 28%, especially among early

adopters of best management practices. These rates are significantly higher than those typically

used in benefit-cost analyses for federal programs.

In our sensitivity analysis, we selected three discount rates—8%, 28%, and 43%—to reflect a

range of scenarios that align with both economic theory and empirical findings. The 28% discount

rate corresponds to the average rate found among early adopters of new agricultural practices in the

study by Duquette et al. (2012), representing a middle-ground scenario where future benefits are

still considered, but to a lesser extent. The 43% discount rate reflects the higher end of discount

rates observed among farmers, particularly those who prioritize immediate returns over future gains.
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Figure 8: Sensitivity analysis: Discount rate

Figure 8 illustrates how varying discount rates affect farmers’ decisions regarding P fertilizer

application and soil sampling. At the benchmark discount rate of 8%, farmers place greater value

on future benefits, leading them to adopt point sampling more frequently and apply less P fertilizer,

focusing on long-term profitability. As the discount rate increases to 28% and 43%, farmers

increasingly favor immediate profits, resulting in reduced point sampling and more aggressive P

fertilizer application. This shift is particularly pronounced at the 43% discount rate, where the

emphasis is heavily on maximizing short-term yields at the expense of long-term soil management.

The behavior observed can be explained by two economic perspectives. First, the option value

of information, the benefits of acquiring precise soil data through sampling before applying fertilizer

becomes more significant at lower discount rates. Farmers with a lower discount rate are more likely

to invest in point sampling because they value the future flexibility and benefits that this information

provides. Second, this behavior aligns with the concept of precautionary saving. By investing in

point sampling, farmers improve their understanding of legacy P levels, thereby reducing the risk of

future yield losses due to nutrient mismanagement. This strategic investment in information capital

is more likely to occur when farmers place greater importance on future outcomes, as seen with

lower discount rates.

5.2 Taxation on Phosphorus Fertilizer

Taxation on fertilizers to restrict chemical fertilization is a method to prevent water damage and this

tool is incorporated by many states into their own environmental policies (Osteen and Kuchler 1986,
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Figure 9: Sensitivity analysis: taxation on phosphorus fertilizer

Notes: x-axis and y-axis indicate legacy P bioavailability and uncertainty in legacy P bioavailability, respectively.

Liang et al. 1998). However, the effectiveness of taxation on agricultural chemicals in reducing

chemical fertilization is unclear. Liang et al. (1998) examined the effect of taxation on P and

nitrogen on fertilizer use through two tax schemes, namly uniform and differentiated taxes. Their

study revealed that a 500% tax reduced only 8% of on-farm fertilizer usage but caused at least a

30% reduction in agricultural labor.

This section recounts our investigation of possible explanations for fertilizer demand with legacy

P state uncertainty. For the general sensitivity analysis, a uniform tax scheme is considered with

tax rates of up to 0%, 50%, 100%, and 300%. The uniform tax scheme can be defined as follows:

P F
tax = P F · (1+Tax Rate), where P F is the producer price, and P F

tax denotes the price of P fertilizer

paid by farmers. Figure 9 represents how increased fiscal pressure on P fertilizer prices influences

fertilizer application decisions within each taxation scenario. As taxation on P fertilizer intensified,

farmers become more conservative and reduce P fertilizer application.

Figure 10 illustrates that as tax rates on P fertilizer rise, risk neutral (η = 0) farmers propor-

tionally reduce their use of P fertilizer. The reduction in P fertilizer application with high taxation

reflects farmers’ prioritization of immediate cost implications over long-term yield assurance. Under

high taxation of P fertilizer, farmers not only reduce their P fertilizer application but also adjust
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Figure 10: Risk neutral farmer responses to P fertilizer tax

Notes: Initial price regime is high. Other initial condition results are provided in the Appendix.

their soil sampling strategies. As seen in the Figures, the increasing tax rates significantly reduce

the use of point soil sampling, particularly in areas where uncertainty of legacy P bioavailability is

high. This reduction in sampling occurs because high taxes make heavy fertilizer use economically

burdensome, so the need for precise, costly soil sampling decreases as well.

When farmers face higher taxes, the incentive to precisely monitor soil nutrient levels diminishes

because the financial burden of fertilizer application outweighs the benefits of fine-tuned soil

management. In other words, as the cost of applying fertilizer rises, the payoff from optimizing

fertilizer use through detailed soil sampling declines. Farmers shift toward a more conservative

approach, applying less fertilizer overall and thus requiring less frequent or precise soil sampling.

This behavior reflects a broader strategy to reduce costs—by cutting both fertilizer application

and the associated costs of soil sampling—since the immediate economic returns from optimizing
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fertilizer use are diminished under high taxation.

5.3 Subsidy on Soil Sampling

The adoption of soil sampling subsidies is a forward-looking agricultural policy instrument aimed at

improving nutrient management practice among farmers. We study the potential impact of various

levels of uniform subsidies on soil sampling rate, csubsidy
s = cs(1− Subsidy Rate), at 0%, 30%, 60%

and full (100%) subsidization. The results presented in Figure 11 reflect a clear trend: As the

subsidy rate increased, a corresponding rise occurs in the adoption of point sampling, particularly

with full subsidy.

This propensity toward greater point sampling is indicative of a growing awareness and appreci-

ation among farmers for the role of precise legacy P data in sustainable management. With subsidies

easing financial loads, farmers are more inclined to assess the fertility of their soil, thus gaining

valuable information that can inform their economic decisions. The increase in point sampling,

driven by subsidies, offers significant potential for long-term shifts in P management practices. As

farmers become increasingly informed with detailed data derived on soil sampling, we may observe

a refinement in P fertilizer application strategies, tailored to the precise needs of crops.

Figure 12 illustrates the impact of soil sampling subsidies on farmers with ψ = ∞, mapped

against RA levels as denoted by η = (0, 0.5, 15). The analysis shows that as η increased, farmers

tend to apply P fertilizer at lower rates, regardless of the subsidy levels for soil sampling. While

financial incentives can encourage the adoption of point sampling. This suggests that although

subsidies make point sampling more accessible, the ingrained risk aversion and the perceived need

to ensure crop yield stability drive continued high P fertilizer application rates. The results indicate

that subsidies can effectively promote point sampling, but that their influence on reducing fertilizer

application is moderated by a farmer’s risk preferences.

The findings presented in Figures 11 and 12 have important implications for policy design.

Policy makers should consider structuring subsidy programs to not only reduce the cost of soil

sampling but also address the underlying risk preferences of farmers. Combining financial incentives

with risk management education and tools can enhance the overall effectiveness of such programs.

Providing farmers with education and resources to better understand and manage risks associated

with nutrient management can complement subsidy programs. By reducing the perceived risks
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Figure 11: Sensitivity analysis: subsidy on soil sampling

Notes: x-axis and y-axis indicate legacy P bioavailability and uncertainty in legacy P bioavailability, respectively.

related to crop yields, farmers may be more inclined to adjust their fertilizer application strategies.

Overall, while subsidies play a significant role in promoting soil sampling, addressing risk

aversion through complementary measures is essential for achieving substantial change in fertilizer

application practices. This comprehensive approach needs to be explored as a future project and

can support sustainable P management, ensuring both agricultural productivity and environmental

protection

6 Discussion

The overuse of P fertilizer in agriculture causes significant surface water pollution, necessitating

policy solutions that encourage farmers to use less P fertilizer while minimizing economic losses in

agricultural production. Because of the dynamic and stochastic nature of P accumulation in soil,

combined with state uncertainty about legacy P stocks, this research adopts a model-based approach

to disentangling these dynamics and their effects on the fertilizer demand and soil sampling

behaviors of risk-averse farmers. We apply methods developed for the resource management

problems involving the partial observability of resource stocks and advance these methods to

32



Figure 12: Risk-averse farmer responses to soil sampling subsidy

Notes: Initial price regime is high. Other initial condition results are provided in the Appendix.

include agent risk and intertemporal smoothing preferences through the Epstein-Zin preferences.

Accordingly, we reveal that risk aversion among farmers significantly contributes to the demand

for fertilizer and their reluctance to rely on estimated legacy P stocks, despite extensive efforts to

promote the utilization of these resources.

The focus of this research is understanding behavioral change among farmers rather than the

environmental damage caused by P runoff. This distinction is critical because our primary objective

is to analyze how farmers respond to different economic and informational incentives concerning

legacy P management. Our findings provide important insights into why farmers may not fully

exploit legacy P stocks and how their risk aversion shapes their P fertilizer application decisions.

While the environmental impacts of P runoff, such as eutrophication and GHG emissions, are

important, our study specifically targets farmer behavior. By understanding the decision-making
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processes of farmers, we can better design policies that are more likely to be adopted and effectively

reduce the overconsumption of P fertilizer. Behavioral focus advances the creation of more practical

and applicable solutions tailored to the needs and preferences of farmers, ultimately leading to

more sustainable agricultural practice. This focus on farmer behavior can be extended in future

research to incorporate environmental factors more explicitly. For instance, expanding the model to

consider the environmental and climate change implications of P management can provide a more

comprehensive grasp of the overall impact of agricultural practices. Future studies can integrate

spatial variability and explore interactions between farmland and adjacent areas, thus offering deeper

insight into the collective economic and environmental outcomes of P fertilizer and soil sampling

decisions.

Future research can also consider the multiple agents involved in the optimal management of

the legacy P problem with additional areas. Currently, the environmental and resource economics

literature using POMDP or MOMDP generally explores single agents in their models. Some

researchers examine multiple agents, but they construct separate problems for each agent and

disregard the interaction between the control exercised by each agent and the unobservable state

problem. However, in a collective study of legacy P management, there will be multiple agents,

in addition to farmers, that have their own observations and beliefs about the environmental state,

which may also include beliefs about other agents’ actions and strategies. By incorporating inter-

agent dynamics into our POMDP model (Emery-Montemerlo et al. 2004), the POMDP may be

constructed and extended as a ‘Partially Observable Stochastic Game’ (POSG) to solve for the

optimal policy among multiple, competitive, or cooperative, agents’ profits (Hansen et al. 2004).

This study demonstrates the significant influence of risk aversion on farmer behavior, highlight-

ing the need for policies that only provide economic incentives but also address the underlying

risk preferences of farmers. Our research centers on farmer related aspects of decision-making

regarding P fertilizer application and soil sampling, laying the groundwork for future explorations

that integrate environmental impacts and multi-agent dynamics, farmer associated factors, and

government initiatives, offering an exhaustive approach to sustainable agricultural practices.
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CHADèS, I., T. G. MARTIN, S. NICOL, M. A. BURGMAN, H. P. POSSINGHAM, AND Y. M. BUCKLEY

(2011): “General rules for managing and surveying networks of pests, diseases, and endangered species,”
Proceedings of the National Academy of Sciences, 108(20), 8323–8328.

CHEN, L. (2022): “Essays on the Economics of Soil Health Practices,” North Carolina State University.

CLARK, C. W. (2010): “General rules for managing and surveying networks of pests, diseases, and
endangered species,” Mathematical Bioeconomics: The Mathematics of Conservation. Wiley.

CONLEY, D. J., H. W. PAERL, R. W. HOWARTH, D. F. BOESCH, S. P. SEITZINGER, K. E. HAVENS,
C. LANCELOT, AND G. E. LIKENS (2009): “Controlling eutrophication: Nitrogen and phosphorus,”
Science, 323(5917), 1014–1015.

DANIEL, K. D., R. B. LITTERMAN, AND G. WAGNER (2019): “Declining CO2 price paths,” Proceedings
of the National Academy of Sciences, 116(42), 20886–20891.

DENBALY, M. AND H. VROOMEN (1993): “Dynamic fertilizer nutrient demands for corn: A cointegrated and
error-correcting system. American Journal of Agricultural Economics,” American Journal of Agricultural
Economics, 75(1), 203–209.

DOWNING, J. A., S. POLASKY, S. M. OLMSTEAD, AND S. C. NEWBOLD (2021): “Protecting local water
quality has global benefits,” Nature Communications, 12(1), 2709.

DUQUETTE, E., N. HIGGINS, AND J. HOROWITZ (2012): “Farmer discount rates: Experimental evidence,”
American Journal of Agricultural Economics, 94(2), 451–456.
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A Methodology and Algorithms

This appendix offers further details and elaborates on the methodology described in paper. It

begins with the foundation of partially observable Markov decision processes (POMDP) and

mixed-observability Markov decision process (MOMDP), two-stage belief updating process, ba-

sis of Markow-swithcing Vector autoregressive model (MSVAR), and concludes by presenting

supplementary figures.

A.1 Detailed formulation of the Dynamic Programming Model

The Bellman equation for the recursive expected utility function eq. (6) can be detailed as:

V (St) =max
F,s

∫∫
π(St, Ft, st)f(P

Y
t+1 | P Y

t , P F
t )bt(Lt)dP

Y
t+1dLt

+ β

∫∫
p(Prt+1 | Prt)p(O

s
t+1 | bt+1(Lt), st)V (St+1)dO

s
t+1dPrt+1 ,

(A1)

and given Epstein-Zin preferences, eq. (8) can be further detailed as:

VEZ(St) =max
F,s

[
(1− β)

(∫∫
π(St, Ft, st)

1−ηf(P Y
t+1 | P Y

t , P F
t )bt(Lt)dP

Y
t+1dLt

) 1−ψ−1

1−η

+ β

(∫∫
p(Prt+1 | Prt)p(O

s
t+1 | bt+1(Lt+1), st)VEZ(St+1)

1−ηdOs
t+1dPrt+1

) 1−ψ−1

1−η
] 1

1−ψ−1

,

(A2)

under state variables, St ≡ [bt(Lt), P Y
t , P F

t ] at time t and Prt is set of the corn and phosphorus (P)

fertilizer prices P Y
t and P F

t in regime rt at time t.

A.2 Solution Methods of Projected Belief

Continuous state POMDP has challenges due to an infinite-dimensional belief space and because

approximating belief states by discretization can lead to computational issues. Exact evaluation

of the posterior distribution is difficult to address, and even structuring the belief updating process

in discretized space is often infeasible. To address this challenge, a density projection technique
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suggested by Zhou et al. (2010) and employed by Kling et al. (2017) in economics is utilized.

Density projection projects the infinite-dimensional belief space onto a low-dimensional param-

eterized family of densities.2 Projection mapping from the belief state b(L) to exponential family

of density f(L; θ), where θ is a natural parameter, is achieved by minimizing the Kullback-Leibler

(KL) divergence between b(L) and f(L; θ) as:

bP (L) ≜ argmin
f

DKL(b ∥ f)

where DKL(b ∥ f) ≜
∫

b(L) log
b(L)

f(L; θ)
dL

∀L, b(L) > 0 ↔ f(L; θ) > 0

(A3)

and thus belief b(L) and its projection f(L; θ) satisfies:

Eb[Tj(L)] = Eθ[Tj(L)] for j = 1, 2, ..., J (A4)

where T (L) is the sufficient statistics of the probability density (Zhou et al. 2010).

Bayesian updating of projected belief state is implemented adopting a particle filtering, which

uses a Monte Carolo simulation approach to estimate the belief state with a limited set of particles

(samples) and simulates the transition of the belief state (De Freitas 2001, Arulampalam et al. 2002).

In the particle filtering, particles Li
t for i = 1, 2, ..., Z are drawn from bt(Lt) and Li

t+1 from the

propagation p(Lt+1|Lt, Ft, st). This allows for the approximation of bt+1(Lt+1) by the probability

mass function (Zhou et al. 2010):

bt+1(Lt+1) ≈
Z∑
i=1

τ it+1ϕ(Lt+1 − Li
t+1) (A5)

where τ it+1 ∝ p(Ol
t+1|Li

t+1, Ft, st), denoting the associated weight and ϕ represent the Kronecker

2Technical interpretation of density projection and particle filtering hereafter closely follows Zhou et al. (2010).
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delta function. Substituting equation (A5) into (A4), the approximation becomes:

Ebt+1 [Tj(Lt+1)] =

∫
Tj(Lt+1)bt+1(Lt+1)dLt+1

≈
∫

Tj(Lt+1)

[ Z∑
i=1

τ it+1ϕ(Lt+1 − Li
t+1)

]
dLt+1

=
Z∑
i=1

τ it+1Tj(L
i
t+1)

= Eθt+1 [Tj(Lt+1)]

(A6)

simplified by the properties of the Kronecker delta function. Thus, if the particles Li
t are drawn from

the projected belief state bPt = f(·; θt) and their propagation Li
t+1 satisfy the

∑Z
i=1 τ

i
t+1Tj(L

i
t+1) =

Eθt+1 [Tj(Lt+1)], the transition probability of θt to θt+1 can be calculated.

Density projection effectively reduces infinite-dimensional density to low-dimensional, parameter-

defined density, transforming the belief Markov decision process (MDP) into a more manageable

and solvable form referred to as ‘projected belief MDP’. In this paper, the legacy P states are defined

as the natural parameters of log-normal distribution and transform to the θ in the ‘projected belief

MDP’ calculation (Kling et al. 2017). The utilization of the log-normal distribution in parameterized

density is particularly advantageous, primarily due to its tractability to positive-valued state vari-

ables and its parametric simplicity characterized by two parameters: mean and coefficient variation

(Sloggy et al. 2020).

While there are numerous ways to solve the projected belief MDP, we follow Kling et al. (2017)

and discretize the projected belief MDP space into a discrete-state space. Because the value function

in eq. (6) and (8) is a function both of the belief and price states, we then compute the value function

on a grid of all discretized possible belief and price state combinations.

The projected belief Markov decision process (MDP) is a low-dimensional, continuous state

MDP (Zhou et al. 2010). To facilitate the value iteration, we first convert the projected belief MDP

into a discrete state MDP.3 This conversion involves discretizing the space of natural parameters θ

in the exponential distribution f(·|θ) (Zhou et al. 2010). In this paper, we employ the log-normal

distribution to define legacy P bioavailability µL and uncertainty in legacy P bioavailability as

3The discretization and estimation methods are adopted from Zhou et al. 2010 and Kling et al. 2017.
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coefficient variation (ν), νL = σL/µL with a parameter set δ = {µL, νL}. Hence, we discretize θ by

calculating the univariate log-normal parameters µ and σ that θ = {µ, σ} where σ > 0 from the δ

(Kling et al. 2017). The calculation of µ and σ is follows:

µ = ln

(
µ2
L√

µ2
L + σ2

L

)
, σ2 = ln

(
1 +

σ2
L

µ2
L

)
. (A7)

For the estimation in discretized space, µL and σL are discretized into a 100×1 vector. A

100×100 mesh grid {δi}Ni=1 = G is then calculated, incorporating all grid points δi = {µL,i, νL,i}

where νL,i = σL,i/µL,i. Within this discretized state space δi, the crop profit function is evaluated

as the expected value of δi, in associated with controls F , s and prices P Y , P F . By defining the

transition probability as p̃(δi, F, s)(δj), representing the probability to transitioning from δi to δj ,

the discretized belief MDP for eq (A1) is formulated as:

Ṽ (δi, P
Y , P F ) =max

F,s
π̃(δi, F, P

Y ′
, P F , s)

+ β
PF

′∑ PY
′∑ N∑
j=1

p(Pr′ | Pr)p̃(δi, F, s)(δj)Ṽ (δj, P
Y ′
, P F ′

),

(A8)

where p(Pr′ | Pr) denote the discretized transition probability of corn price P Y and P fertilizer

price P F , estimated from the MSVAR model.4

The profit function π̃(δi, F, P
Y , P F , s) and transition probability p̃(δi, F, s)(δj) associated with

controls F and s can be estimated by using Monte-Carlo simulation, as follows (Zhou et al. 2010):

4In price dynamics, the t+ 1 state is represented by ′ notation.
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Algorithm 1. Estimation of Crop Profit Function

Input: δi, P Y , P F , F, s,ω2

Output: π̃(δi, F, P Y , P F , s)

Step 1. Sampling:

L = f−1(ω2|θi) where L = {L1, L2, ..., LZ}

Step 2. Estimation:

π̃(δi, F, P
Y ′
, P F , s) =

1

Z

Z∑
j=1

PY
′∑
π(Lj, F, P

Y ′
, P F , s)f(P Y ′ | P Y , P F )

Source: Zhou et al. (2010)

ωk is the set of Sobol points ωk = {ωk
1 ,ω

k
2 , ...,ω

k
Z} that derived from Sobol sequence. For the

estimation of crop profit function and transition probability, we use the three-dimensional (k = 3)

Sobol points ωk that includes Z =10,000 points. In the draw process, the Sobol draw omits an

initial 1,000 points, then select every 101st point thereafter (MathWorks. 2024). We also apply a

random linear scramble along with a random digit shift. In the estimation of log-likelihood function,

Sobol draw is efficient methods. To achieve the same precision level of 1,000 Sobol draws in

the estimation of log-likelihood function value, the estimation requires the 1,661 Haltom draws,

4,155 Modified Latin Hyper Cube Sampling draws or 9,987 pseudo-random draws (Czajkowski and

Budziński 2019). With a five-dimensional Sobol draw, the desired precision level requires at least

2,100 points (Czajkowski and Budziński 2019), and we choose the number of points to 10,000 to

increase the precision level.

Estimation of transition probability p̃(δi, F, s)(δj) is in Algorithm 2. Based on the output from

Algorithm 2. and the estimated transition probabilities of corn and P fertilizer price, we proceed to

calculate the comprehensive of transition probabilities p(Pr′ | Pr)p̃(δi, F, s)(δj). The combination

of these probabilities is achieved through the Kronecker product of probability matrices for corn

and P fertilizer prices, as well as the transition probabilities Pr ⊗ P̃ (Sloggy et al. 2020), where Pr
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is the probability matrix for corn and P fertilizer prices over moderate and high regimes and P̃ is the

estimated probability matrix of ∀i, j, p̃(δi, F, s)(δj).
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Algorithm 2. Estimation of transition probability

Input: δi, P Y , P F , F, s,ω1,ω2,ω3

Output: p̃(δi, F, s)(δj)

Step 1. Sampling:

L = f−1(ω2|θi) where L = {L1, L2, ..., LZ}

Step 2. Compute L̃ by propagation of L according to the dynamics of legacy P (eq. 1) using

controls F and s, and carry-over parameter ρ that is generated using ω1.

Step 3. Compute O1, O2, O3, ..., OZ from L̃ = {L̃1, L̃2, L̃3, ..., L̃Z} using equation 5 and

observation error {λl
i}Zi=1 that is generated by ω3, where s is determined by the

controls ss and ps.

Step 4. For each Ok, k = 1, 2, ..., Z, compute the updated belief state

b̃k =
Z∑
i=1

τ ki ϕ(L− L̃i),

where ϕ is the Kronecker delta product function and

τ ki =
p(Ok | L̃i, F, s)∑Z
i=1 p(Ok | L̃i, F, s)

Step 5. For k = 1, 2, ..., Z project each b̃k onto the lognormal density to find θ̃k, and compute

δ̂k from θ̃k.

Step 6. For each k = 1, 2, ..., Z, calculate the bilinear interpolation weight for δ̃k on G. For

each δ̃k, sum the bilinear interpolation weight.

p̃(δi, F, s)(δj) =
sum of bilinear interpolation weights assigned to δj

Z

Source: Zhou et al. (2010), Kling et al. (2017)
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B Soil Sampling and Yield-Based Information Update

In this section, we discuss the process behind the two-stage belief updating mechanism. The two-

stage approach considers the dynamic nature of decision-making in agricultural practices, where

information is acquired at different points in time.

The first stage of belief updating occurs when farmers conduct soil sampling before making

fertilization decisions. This initial update is crucial as it provides farmers with more accurate

information about the legacy P state, allowing them to make more informed fertilization choices.

The second stage of belief updating takes place after the fertilization and harvest, when farmers

receive additional information through the actual corn yield. This yield data, reflecting the results

of their fertilization decisions, provides a further opportunity to update their beliefs about the legacy

P state. By incorporating information from both soil sampling and yield outcomes, the two-stage

belief updating process captures the evolving understanding farmers have about their fields’ P

conditions.

B.1 Two-Stage Belief Updating Process

Figure B1 illustrates the two-stage belief updating process within a POMDP framework. In this

model, the unobservable state of legacy P Lt represents the true but hidden condition of the

bioavailability at time t, which evolves to a new state Lt+1 by the next time period. Farmers, unable

to directly observe this state, rely on a sequence of observations and actions to update their beliefs

about the legacy P condition.

The process begins with soil sampling st, where farmers obtain an initial observation O
(1)
t that

provides partial information about the current state Lt. This observation is used to update their belief

from bt to b
(1)
t within a period, forming the first stage of belief updating. Following this, farmers

apply phosphorus fertilizer Ft, and the resulting corn yield Yt offers additional information. This

yield data leads to a second update of their belief, from b
(1)
t to bt+1, as they refine their understanding

of the legacy P state.

The arrows in the figure indicate the flow of information between these components, showing

how observations from soil sampling and yield outcomes interact with the unobservable state to

update the belief state over time. In the first belief updating process, because farmers adopt soil
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Figure B1: Schematic of Two-Stage Belief Updating Process

Notes: Figure A1 illustrates the two-stage belief updating process for farmers’ decision-making in a POMDP
framework. The first stage involves updating the belief state bt based on soil sampling st, and the second stage further
updates the belief using corn yield Yt after P fertilizer application Ft.

sampling before making a P fertilizer decision, the belief updating process begins with the following

equation:

b
(1)
t (Lt) ∝ p(Os

t | Lt, st)bt(Lt), (B1)

where Ot represents the observation obtained from soil sampling st. The belief bt(Lt) is updated to

b
(1)
t (Lt) based on the new information provided by the soil sampling. This updated belief reflects

the farmer’s revised understanding of the legacy P state Lt after considering the soil test results.

The next step in the belief updating process occurs after the corn yield Yt is realized. The

corn yield is calculated based on the current legacy P state, and it is conditional on the P fertilizer

application Ft. In our model, we assume that farmers directly obtain information from the corn

yield Yt. Consequently, we assume that the observation Ot+1 at time t + 1 is equivalent to the

yield Yt. This assumption is based on the fact that the yield is a direct and observable outcome

that strongly influences the farmer’s beliefs about the soil’s legacy P levels. For instance, if the

yield Yt is high, farmers are likely to believe that the soil has a high level of legacy P, suggesting

that their prior application of fertilizer was effective or that the soil had sufficient nutrient reserves.

Conversely, a low yield might lead farmers to adjust their beliefs toward the soil having lower legacy
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P levels. By equating Ot+1 with Yt, we simplify the belief updating process while still capturing

the essential feedback mechanism that guides farmers’ future management decisions. The belief

updating process at this stage is represented by the equation:

bt+1(Lt+1) ∝
∫

p(Yt | Lt, Ft)p(Lt+1 | Lt, Ft)b
(1)
t (Lt) dLt. (B2)

Here, bt+1(Lt+1) is the updated belief at time t+1, taking into account the information provided

by the corn yield Yt. The term P (Yt | Lt, Ft) represents the likelihood of observing the yield

given the previous legacy P state and the fertilizer application, while p(Lt+1 | Lt, Ft) represents the

propagation of the legacy P state from time t to t+ 1 given the fertilizer application Ft.

B.2 Defining the Corn Yield Distribution and Bayesian Updating

In this section, we define the corn yield distribution for likelihood p(Yt | Lt, Ft) in our Bayesian

updating process. Corn yield distributions are derived from Sobol points L for each natural

parameter θi following Algorithm 1.

These Sobol points are generated from a log-normal distribution, resulting in yield samples

Yt that align with a log-normal distribution, as shown in Figure B2. The fitted log-normal curve

effectively captures this distribution, accurately representing the central tendency, variability, and

skewness inherent in the yield simulations. Defining the form of the yield distribution is essential

for our Bayesian updating because the yield serves as an observation in the likelihood function.

By understanding the distribution of yields under varying phosphorus fertilizer applications, we

can better inform the belief updating process, ensuring that our model realistically reflects the

probabilistic nature of yield outcomes.

Figure B3 depicts the belief update based on information obtained from soil sampling. The prior

belief distribution bt, (shown by the red dashed line) is updated to the posterior distribution b
(1)
t ,

(shown by the blue solid line) after incorporating the soil sampling observation (indicated by the

black dotted line). As seen in the figure, the observation provides significant information, leading

to a notable shift in the belief from the prior to the posterior distribution. This substantial update

indicates that the soil sampling results are effective in refining the farmer’s understanding of the

legacy P state, which is crucial for making informed fertilization decisions.
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In contrast, Figure B4 represents the second stage of belief updating, where the belief is further

adjusted based on information from the crop yield. The posterior distribution from the first stage b(1)t

now serves as the prior distribution in this stage, and the crop yield observation (again indicated by

the black dotted line) informs the update to the final posterior distribution bt+1 (shown by the green

solid line). However, in this stage, the crop yield provides less additional information, resulting

in a less pronounced shift from the prior to the posterior distribution. The reason for this is that

the crop yield, while reflective of the legacy P state, is also influenced by other factors, leading to

greater uncertainty and less precise updating of the belief. Consequently, the posterior distribution

has a relatively wider variation, indicating that the yield data does not significantly help the farmer’s

understanding of the legacy P levels compared to the soil sampling. This analysis demonstrates the

critical role of soil sampling in the belief-updating process, particularly in the first stage, and in our

paper, we consider soil sampling for the belief-updating process.
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Figure B2: Distributions of Corn Yields

Notes: Figure B2 demonstrates that the distribution of corn yields closely follows a log-normal distribution across
different mean legacy P levels (µL) and coefficients of variation (νL). The histograms of the simulated yield samples,
along with the overlaid fitted log-normal curves, show a strong alignment between the empirical simulations and the
log-normal distribution. This consistency across varying scenarios justifies the assumption that corn yield distributions
can be appropriately modeled using a log-normal distribution in subsequent analyses.
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Figure B3: First Stage Belief Updating Process

Notes: Figure B3 illustrates the prior bt and posterior b(1)t distributons across different combinations of legacy P
bioavailability µL and uncertainty νL. The observation (black dotted line) is derived from soil sampling, which
provides partial information about the legacy P levels. The prior belief (red dashed line) is updated to the posterior
belief (blue solid line) after incorporating the soil sampling observation. Each subplot corresponds to a different
combination of µL and νL, demonstrating how these parameters influence the updating process and the resulting belief
distributions. As νL increases, the posterior distribution becomes wider, indicating greater uncertainty in the belief
about the legacy P state.
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Figure B4: Second Stage Belief Updating Process

Notes: Figure B4 shows the progression from prior b(1)t to posterior bt+1 belief distributions after incorporating
additional information from the crop yield, across different combinations of legacy P bioavailability µL and uncertainty
νL for the legacy P state. The observation from the crop yield is indicated by the black dashed line, which further
informs the belief updating process. The prior distribution (blue dashed line) represents the belief after the first stage of
updating, while the posterior distribution (green solid line) reflects the updated belief after considering the crop yield
observation.
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C Estimation of Price Transition: Markov-switching Dynamic Regression

Model

Table C1: Markov switching dynamics regression for corn and phosphorus fertilizer prices

Corn (ln(P Y
t+1)) Phosphorus fertilizer (ln(PF

t+1))

Moderate High Moderate High

ln(PF
t ) 0.091 0.763*** 0.947*** –1.347***

(0.186) (0.284) (0.151) (0.251)

ln(P Y
t ) 0.633*** 0.280 –0.034 2.234***

(0.199) (0.205) (0.097) (0.470)

Const. –0.410 –3.408** 0.275 11.866***
(α0,rt , β0,rt) (0.923) (1.448) (0.723) (1.862)

Std Dev. 0.109 0.075
(σϵ,rt , σv,rt) (0.014) (0.009)

Log-likelihood 12.309 31.502

AIC –0.207 –1.406

Notes: Robust standard errors are in parentheses. In the regression, constant standard deviation σ2 = σ2
i = σ2

j is
assumed for rt ∈ {i, j}, i ̸= j. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

In this section, We estimate a log-linear Markow-switching Dynamic Regression (MSDR) model

to construct the basis parameters of prior distributions in MSVAR model. The specification of the

(MSDR) of the following form:

ln(P Y
t+1) = α0,rt+1 + α1,rt+1 ln(P

Y
t ) + α2,rt+1 ln(P

F
t ) + ϵt+1

ln(P F
t+1) = β0,rt+1 + β1,rt+1 ln(P

F
t ) + β2,rt+1 ln(P

Y
t ) + vt+1

(C1)

where α0,rt+1 , β0,rt+1 are the intercepts for price regime rt+1 and ϵt+1, vt+1 are the identical distribu-

tion (i.i.d.) normal errors with mean zero and regime-dependent variance σ2
ϵ,rt+1

, σ2
v,rt+1

, respectively.

We allow for two price regimes in the model, rt ∈ {moderate, high}, based on visual inspection of

the data in Figure 3.

MDSR results are presented in tables C1. To generate the basis parameters of prior distribution
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of intercept (µµ, σ
2
µ) and coefficients (µΦ, σ

2
Φ), we use the averaged value of estimated values

(α0, β0) and (αi, βi) for each prior mean and used the averaged values of standard error to calculated

the prior variances (σ2
µ, σ

2
Φ)
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D Supplementary Figures

Figure D1: Optimal policy with fixed stochasticity in growth rate

Notes: : In the original model, the standard deviation σρ(L) of the log percentage growth rate is inversely related to the
legacy P level (equation 2), reflects an assumption in the model that more abundant legacy P stocks are assumed to be
relatively more predictable in terms of their carry-over to the next period. Because we have no quantitative data with
which to estimate the form of σρ(L), we investigate the effects of the alternative assumption that σρ(L) = ς is fixed at
uncertainty coefficient. This figure shows the model output derived under the alternative assumption. Given the
uncertainty regardless in the dynamics scaling with legacy P levels, an optimal approach is to employ substantially
more point sampling across state spaces.
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Figure D2: Variance and Covariance of Residuals Across Price Regimes in MSVAR Model

Notes: : The figure illustrates the variance and covariance of residuals for corn and phosphorus fertilizer price regimes
over 10,000 iterations, based on a Markov-switching vector autoregression (MSVAR) model. The top left panel
displays the variance of residuals for the moderate price regime, showing stable fluctuations. Similarly, the top right
panel represents the variance of residuals for the high price regime, which follows a similar pattern of stabilization.
Finally, the bottom panel shows the covariance of residuals between the moderate and high price regimes. The
covariance exhibits more consistent fluctuations throughout the iterations. This figure highlights the dynamics of the
model, with variances and covariances are consistent, indicating the model’s convergence.
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Figure D3: Risk analysis: Epstein-Zin preference (moderate price regime)
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Figure D4: Risk neutral farmer responses to P fertilizer tax (moderate price regime)
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Figure D5: Risk-averse farmer responses to soil sampling subsidy (moderate price regime)
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