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Abstract

This study evaluates the climate effects of environmental enforcement using the 2009 consent
decree at Duke Energy’s Gallagher coal plant as a natural experiment. The legally mandated
shutdown or refueling of two generating units led to a sharp reduction in coal consumption
starting in 2011. We apply a synthetic difference-in-differences (SDID) estimator to U.S. state-
level panel data from 1998 to 2022 to estimate the causal impact of this intervention on CO2

emissions. The results show significant and persistent reductions in total and coal-related
emissions in Indiana, especially within the electric power sector. Extending the analysis to 14
additional states with similar coal unit retirements, we find consistent emission declines using a
staggered SDID framework. Finally, we quantify the welfare implications of avoided emissions
by estimating the environmental consumer surplus (ECS) using the social cost of carbon (SCC)
framework. The results suggest substantial climate-related benefits associated with federal
enforcement actions.
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1 Introduction

Coal-fired power plants have long been recognized as major sources of both local air pollutants and

global greenhouse gas emissions (Graff Zivin and Neidell, 2013; Cummiskey et al., 2019; Strasert

et al., 2019; Sampedro et al., 2021; Filonchyk and Peterson, 2023). In the U.S., coal combustion

accounts for a disproportionate share of energy-related carbon dioxide (CO2) emissions, alongside

co-pollutants such as sulfur dioxide (SO2), nitrogen oxides (NOx), and mercury (EPA, 2009b;

Burtraw and Woerman, 2013). According to the U.S. Congressional Budget Office, coal-fired

electricity generation alone accounted for over 60% of the electric power sector’s CO2 emissions in

2021 (Congressional Budget Office, 2023).

Numerous studies have emphasized the urgency of reducing coal use to meet national and

global climate targets (Burtraw and Woerman, 2013; Davis and Socolow, 2014; Murray and Maniloff,

2015; Gillingham and Stock, 2018; Net, 2021). Beyond market-based approaches, recent research

shows that non-price regulatory interventions can deliver substantial emission reductions, particu-

larly when targeting aging, inefficient coal infrastructure (Burtraw and Woerman, 2013; Sgarciu

et al., 2023; Campos Morales et al., 2024). These findings suggest that enforcement-based policies

may complement carbon pricing in accelerating decarbonization.

Starting in late 1999, the U.S. Environmental Protection Agency (EPA) announced civil com-

plaints against 7 electricity producing utilities for violations at coal-fired power plants they operated

(EPA 2023). One notable enforcement actions under the U.S. Clean Air Act was the 2009 consent

decree involving Duke Energy’s Gallagher Generating Station in Indiana. The EPA and the Depart-

ment of Justice (DOJ) sued Duke (then Cinergy) for modifying two units without required permits

or pollution controls—violating the Act’s New Source Review (NSR) provision (EPA, 2009a). The

court ruled in favor of the government, triggering a consent decree that forced Duke to either shut

down Units 1 and 3 or refuel to natural gas and install sorbent injection on the remaining units

(EPA, 2009a).

Generally, NSR enforcement actions required retrofitting scrubbers, fuel changes, and/or the

shutdown of generators (EPA, 2023). As such, the Gallagher settlement provides an instance of

a legally mandated refueling that resulted in the shutdown of two generators and large-scale

CO2 emissions reductions (EPA, 2009b). Other scholars have highlighted the uniqueness of such

structural transitions, noting that regulatory enforcement rarely achieves deep decarbonization

unless it compels technological or fuel substitution (Aldy and Pizer, 2015; Fowlie and Muller, 2019).
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Figure 1: Coal Consumption at Gallagher Power Plant. The sharp decline in 2011 reflects the implementation phase of
the 2009 consent decree.

The Gallagher consent decree (EPA, 2009b) outlined a timeline for the required actions to be

taken in generators 1 and 3. Starting in 2009, the Gallagher plant was required to reduce SO2

emissions. This first phase of reductions lasted until January 30, 2011, after which time allowable

emission levels became more stringent. Finally, Duke Energy needed to choose whether to refuel or

shutdown generators 1 and 3 by January 1, 2012. The final shutdown needed to be completed by

February 1, 2012. In Figure 1, there’s a rather dramatic reduction in coal consumption starting in

2011, that coincides with the second phase of emission targets. Ultimately, Duke Energy elected to

shutdown these generators.

Our analysis uses state-level panel data from 1998 to 2022 to construct a counterfactual emission

trajectory for Indiana had the Gallagher settlement not occurred. We focus both on total energy-

related CO2 emissions and disaggregated sources by fuel and economic sector. This setting offers an

ideal quasi-experimental case: Indiana received a sharp, exogenous policy shock, while comparable

states did not undergo similar fuel-switching events during the same period (Abadie et al., 2010;

Arkhangelsky et al., 2021).

Our results indicate that the 2009 consent decree led to significant and sustained reductions in

Indiana’s total and coal-related CO2 emissions, concentrated in the electric power and industrial

sectors. These effects align with recent findings that large-scale plant retirements or repowering

tend to produce deep emission cuts when accompanied by binding legal mandates (Cullen, 2013;

Bistline et al., 2025). We further extend the analysis by incorporating 14 other states that undertook

major coal unit retirements, using a staggered SDID framework that accounts for variation in

treatment timing (Arkhangelsky et al., 2021; Clarke et al., 2024). We compare different approaches
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for covariate adjustment and find that the projection method proposed by Kranz (2022) improves

estimation precision in staggered settings. This methodological insight contributes to a growing

literature on best practices in causal inference under staggered adoption (Sun and Abraham, 2021;

Callaway and Sant’Anna, 2021).

In addition to estimating emission reductions, we complement our causal analysis with a

welfare-based evaluation of the policy’s environmental benefits. Specifically, we quantify the

environmental consumer surplus (ECS) generated by reduced carbon emissions using the social cost

of carbon (SCC) framework (Greenstone and Jack, 2015; Nordhaus, 2017; Auffhammer, 2018; Cai

and Lontzek, 2019; Rennert et al., 2022). This approach allows us to translate avoided emissions into

a monetized measure of climate-related damages averted. By applying this method to both Indiana

and the staggered multi-state sample, we estimate the net present value (NPV) of cumulative

societal gains over a ten-year horizon. Our findings suggest that regulatory enforcement can yield

billions of dollars in environmental benefits, reinforcing the economic case for strict compliance with

federal emissions mandates. This welfare-based extension complements our emissions analysis

and situates our results within broader discussions of regulatory cost-effectiveness and climate

policy evaluation (Greenstone and Hanna, 2014; Auffhammer, 2018; Rennert et al., 2022).

Overall, this study contributes to the broader literature on climate policy and regulatory

enforcement. While carbon pricing remains central to many national strategies, our findings

highlight the potential for targeted command-and-control interventions to produce ancillary climate

benefits, especially when aimed at legacy fossil fuel infrastructure. As policymakers seek to

decarbonize the power sector and meet net-zero goals, understanding the emission impacts of

environmental enforcement provides a complementary lens to evaluate decarbonization strategies.

The remainder of this paper is organized as follows. Section 2 provides background on the NSR

enforcement and the Gallagher consent decree. Section 3 outlines the empirical strategy, including

the SDID estimator. Section 4 describes the data and summary statistics. Section 5 presents the

main results and sectoral analysis, and Section 6 provides the welfare analysis. Finally, Section 7

concludes with policy implications.

2 Background

Coal-fired power plants are major contributors to both local air pollution and global greenhouse

gas emissions (Graff Zivin and Neidell, 2013). In the United States, coal combustion alone accounts
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Figure 2: Geographic Distribution of Duke Energy’s Regulated Power Generation Facilities in Indiana. Source:
Form 10-K (2008), U.S. Securities and Exchange Comission. U.S. SEC. (2009)

for a significant share of energy-related CO2 emissions, along with harmful co-pollutants such as

SO2, NOx, and mercury. Given the environmental and public health risks associated with these

emissions, the EPA has increasingly relied on the Clean Air Act’s NSR provisions to bring older

coal-fired units into compliance through retrofits or fuel switching (EPA 2009b).

One of the most consequential enforcement cases under this initiative involved Duke Energy’s

Gallagher Generating Station in New Albany, Indiana. Built in the 1950s and comprising four

coal-fired units, the Gallagher Plant had long been a significant emitter of CO2 and SO2. In 1999,

the EPA and the DOJ filed a lawsuit alleging that Duke Energy (then Cinergy) had made major

modifications to Units 1 and 3 without installing best-available pollution controls or acquiring

the necessary permits, in violation of the NSR provisions of the Clean Air Act and the Indiana

State Implementation Plan (EPA 2009a). After a decade of litigation, a federal jury in Indianapolis

found in May 2009 that Duke had indeed violated the law by modifying the units in ways that led

to substantial increases in SO2 emissions without the required pollution control technology (EPA

2009a). Figure 2 shows the location of the Gallagher Plant in southern Indiana.

In response to these findings, a partial consent decree was entered in late 2009. Under the terms

of the settlement, Duke agreed to either repower Units 1 and 3 with natural gas or permanently

shut them down. The company also committed to installing Dry Sorbent Injection (DSI) technology

on Units 2 and 4. These actions were expected to reduce SO2 emissions at the Gallagher Plant by

approximately 35,000 tons per year, an 86% reduction compared to 2008 levels (EPA 2009b). The

conversion of Units 1 and 3 to natural gas was projected not only to eliminate SO2, mercury, and
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particulate matter emissions from those units, but also to reduce their carbon dioxide emissions by

roughly 50% per unit of electricity generated (EPA 2009b).

The consent decree also required Duke to pay a $1.75 million civil penalty and invest $6.25 mil-

lion in environmental mitigation projects, including land conservation, hybrid vehicle conversions,

and renewable energy upgrades (EPA 2009b). These measures reflect the federal government’s

strategy of combining enforcement with broader environmental co-benefits. As noted by EPA

officials at the time, the case was emblematic of how targeted enforcement against local pollution

sources could yield ancillary reductions in global climate pollutants (EPA 2009b).

While the Duke Gallagher case was part of a broader EPA initiative targeting non-compliant

coal-fired power plants, it stands out in several important respects. Most NSR settlements reached

during the 2000s required end-of-pipe controls (e.g., scrubbers) to reduce SO2 and NOx emissions,

but rarely involved fuel switching (EPA 2023). In contrast, the Gallagher decree explicitly mandated

either permanent shutdown or full conversion to natural gas—resulting in a structural change in

fuel use and a direct reduction in CO2 emissions (EPA 2009b; EPA 2009a).

Other states did face enforcement actions during the 2000s. However, these cases typically did

not entail comparable mandates to eliminate coal combustion or substitute natural gas on this scale

(EPA 2023). Moreover, none of the states in our control group were subject to a similar magnitude

of CO2-relevant structural change in 2009, making Indiana a unique treatment case. This contextual

difference strengthens the validity of our identification strategy.

The Gallagher case thus provides a natural policy shock—one that is exogenous to CO2-specific

regulation but nonetheless induced a significant fuel transition at a major emitter. This setting

offers a valuable opportunity to examine the extent to which non-climate air quality enforcement

can influence carbon emissions at the state level. In this paper, we exploit the 2009 Duke Energy

settlement as a quasi-experimental policy intervention and estimate its causal impact on energy-

related carbon dioxide emissions in Indiana. Using a SDID approach, we examine both aggregate

and sector-specific emission trajectories before and after the intervention, focusing on whether the

shift away from coal led to persistent reductions in CO2 emissions from electric power generation

and related sectors.

3 Empirical Strategy

We estimate the causal effect of Indiana’s Gallagher coal plant intervention on carbon emissions
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using the SDID estimator proposed by Arkhangelsky et al. (2021). The SDID approach generalizes

traditional DID and SC methods by constructing a weighted two-way fixed effects estimator that

relaxes the parallel trends assumption through simultaneous reweighting of units and time periods.

This enhances robustness to unobserved confounding and non-parallel trends 1.

Let Yit denote the observed emissions for state i ∈ {1, ..., N} at time t ∈ {1, ..., T}. Let Wit ∈

{0, 1} denote the treatment indicator, where Wit = 1 if state i is treated at time t (i.e., post-Gallagher

closure in Indiana) and Wit = 0 otherwise. Following Arkhangelsky et al. (2021), the SDID estimator

computes the average treatment effect on the treated (ATT), denoted τ , by solving the following

weighted least squares problem:

(τ̂ , µ̂, α̂, β̂) = arg min
τ,µ,α,β

N∑
i=1

T∑
t=1

(Yit − µ− αi − βt − τWit)
2 ω̂iλ̂t, (1)

where ω̂i and λ̂t are the estimated unit and time weights, respectively, optimized over the pre-

treatment period. These weights localize the estimation to the most comparable states and periods.

The unit weights ω̂i are chosen by solving:

(ω̂0, ω̂) = argmin
ω0,ω

Tpre∑
t=1

(
ω0 +

∑
i∈control

ωiYit −
1

Ntreated

∑
i∈treated

Yit

)2

+ ζ2Tpre∥ω∥2, (2)

subject to
∑

i∈control ωi = 1 and ωi ≥ 0. The parameter ζ controls the degree of regularization

(Arkhangelsky et al., 2021).

The time weights λ̂t are similarly estimated as:

(λ̂0, λ̂) = argmin
λ0,λ

∑
i∈control

λ0 +

Tpre∑
t=1

λtYit −
1

Tpost

T∑
t=Tpre+1

Yit

2

+ ζ2Ncontrol∥λ∥2, (3)

subject to
∑Tpre

t=1 λt = 1 and λt ≥ 0 2.

These weights enable a weighted DID estimator for ATT:

τ̂ = δ̂treated −
∑

i∈control

ω̂iδ̂i, (4)

1Our methodological interpretations for SDID are informed by the formulations presented in Arkhangelsky et al.
(2021) and Clarke et al. (2024).

2We adopts a minimal regularization parameter, ζ = 1 × 10−6σ̂, to ensure a unique solution for the time weights
(Clarke et al., 2024).
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where

δ̂treated =
1

Ntreated

∑
i∈treated

δ̂i =
1

Ntreated

∑
i∈treated

 1

Tpost

T∑
t=Tpre+1

Yit −
Tpre∑
t=1

λ̂tYit

 . (5)

To improve precision and reduce confounding, we include time-varying covariates Xit by

applying a residualization step. We regress Yit on covariates Xit to derive γ, and then compute

residualized outcomes:

Ŷit = Yit −X ′
itγ̂. (6)

The SDID estimator is then applied to Ŷit (Arkhangelsky et al., 2021; Clarke et al., 2024).

To assess the statistical significance of the estimated treatment effects, we implement a placebo

inference procedure. Following Arkhangelsky et al. (2021) and Clarke et al. (2024), we generate

placebo estimates by applying the SDID estimator to units in the donor pool (i.e., control states) as

if they had received the treatment. Specifically, we iteratively assign the treatment to each control

unit and compute the corresponding placebo ATT under the same pre- and post-treatment periods

used for Indiana. This generates a distribution of placebo treatment effects {τ̂p}Pp=1, which serves

as an empirical null distribution under the assumption of no treatment effect.

The variance of the estimator is then computed as V̂placebo(τ̂) = Var(τ̂p), allowing for the

construction of robust confidence intervals as

τ̂ ± zα/2

√
V̂placebo(τ̂). (7)

In our application, we use this placebo distribution to derive standard errors and report p-

values based on the percentile rank of the true ATT estimate within the placebo distribution.

This procedure helps to account for finite-sample uncertainty and relaxes reliance on asymptotic

approximations, which may be problematic in small donor pools or when the treated unit has

unique characteristics (Abadie et al., 2010; Clarke et al., 2024). Furthermore, the placebo inference

offers an intuitive falsification test: if the policy truly had no effect, we would expect Indiana’s

estimated ATT to fall within the distribution of placebo effects. Instead, we find Indiana’s ATT is

among the most extreme, reinforcing the credibility of a genuine treatment effect.
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4 Data

To estimate the impact of state-level carbon emissions policy, we assemble a panel dataset that

tracks annual CO2 emissions and key economic and demographic variables for each U.S. state

and the District of Columbia from 1998 to 2022. Our primary outcome variable is total energy-

related CO2 emissions, measured in million metric tons (MMT) per year, obtained from the U.S.

Energy Information Administration (EIA) (U.S. Energy Information Administration, 2024). These

emissions figures are compiled from fossil fuel combustion across five major sectors: residential,

commercial, industrial, transportation, and electric power generation. Importantly, the EIA assigns

emissions to the state where combustion physically occurs rather than the state where the energy is

ultimately consumed (U.S. Energy Information Administration, 2023). This geographic attribution is

particularly relevant when analyzing state-level policy effects, as it ensures that observed emissions

reflect actual in-state fuel usage and regulatory jurisdiction.

The emission estimates provided by the EIA are derived by combining data on fossil fuel

consumption—sourced from the State Energy Data System (SEDS)—with standardized fuel-specific

carbon coefficients (U.S. Energy Information Administration, 2023). The EIA’s methodology ac-

counts for the type and quantity of fuel used in each sector, providing a consistent and comprehen-

sive measure of CO2 emissions that is comparable across states and years. Because the estimation

process does not include emissions from biomass or land use change, the resulting data focus

exclusively on fossil-fuel-related emissions, aligning with the regulatory targets of most state-level

carbon mitigation policies.

To construct a credible counterfactual in our SDID framework, we supplement the EIA emission

data with covariates that capture state-level economic activity and population dynamics. We include

real gross domestic product (GDP), sourced from the Bureau of Economic Analysis (BEA), to control

for changes in industrial output and economic growth that may affect emissions independently

of policy interventions (Stern, 2004; Ang, 2007; Murray and Maniloff, 2015; U.S. BEA, 2025). In

addition, we compute the annual population growth rate using state-level population data from

the Federal Reserve Bank (Federal Reserve Bank of St. Louis, 2024). Population dynamics are a

critical confounder, as growing populations often imply increased energy demand, infrastructure

expansion, and vehicle usage—all of which can influence the level and trajectory of emissions

(Dietz and Rosa, 1997; Shi, 2003; O’Neill et al., 2012; Huntington and Liddle, 2022). Including these

covariates allows us to account for observable heterogeneity across states, thereby improving the
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Pooled sample Treated group Control group
pre post pre post pre post

Log Real GDP 11.88 12.13 12.59 12.78 11.87 12.11
Population growth (%) 1.19 0.70 2.03 1.80 1.17 0.67
Total CO2 emissions (MMT) 101.18 91.51 230.25 183.07 97.60 93.46

Fuel specific emission (MMT)
Coal emissions 34.61 23.68 145.63 93.36 31.52 21.74
Natural gas emissions 22.55 26.99 28.04 40.76 22.30 26.61
Petroleum emissions 44.20 40.85 56.58 48.94 43.67 40.62

Sectoral specific emission (MMT)
Commercial emissions 4.12 4.25 5.72 5.59 4.07 4.21
Electric power emissions 38.71 31.11 118.50 86.14 36.49 29.58
Industrial emissions 18.07 17.43 52.35 43.71 17.12 16.70
Residential emissions 6.57 6.03 9.51 8.31 6.48 5.97
Transportation emissions 33.72 32.70 44.17 39.32 33.43 32.51

Table 1: Covariate and outcome means by group (1998–2022). Real GDP is expressed in constant 2017 dollars, allowing
for inflation-adjusted comparisons across years. The table reports mean values for key variables across the pooled
sample, treated state (Indiana), and control states. “Pre” refers to the period prior to the 2011 treatment year against
Indiana’s Gallagher coal plant, and “Post” refers to the period from 2011 onward.

plausibility of the identification strategy and reducing omitted variable bias in the treatment effect

estimation.

The final dataset is a balanced panel of 37 cross-sectional units—selected 36 U.S. states and the

District of Columbia—over a 25-year period from 1998 to 2022, yielding 925 state-year observations.

Table 1 presents covariate and outcome means for the pooled sample, the treated group (Indiana),

and the control group, separately for the pre- and post-treatment periods 3.

Although the Gallagher consent decree was finalized in 2009, we designate 2011 as the treatment

year in our analysis. This timing reflects the actual implementation phase of the decree, during

which significant operational changes took place at the Gallagher power plant. As shown in

Figure 1, coal consumption at the facility remained relatively stable through 2010, averaging over

1 million short tons annually. In contrast, 2011 witnessed a dramatic decline in coal use to 382

thousand short tons—a nearly 65% drop from the previous year. This sharp reduction indicates the

onset of structural changes associated with the consent decree, such as the mandated shutdown of

Units 1 and 3 and the repowering of Units 2 and 4 with natural gas by mid-2012. By selecting 2011 as

the treatment year, we capture the emissions trajectory immediately preceding these transformative

shifts, while avoiding anticipatory or transitional dynamics that might confound the analysis.

In Table 1, Indiana stands out for its substantially higher carbon intensity. In the pre-treatment

period, total CO2 emissions in Indiana averaged 230.25 MMT, more than double the control group

3List of excluded states and details are denoted in Table A1
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average of 97.60 MMT. The gap is especially wide in coal-related emissions (145.63 vs. 31.52 MMT)

and electric power emissions (118.50 vs. 86.14 MMT), consistent with Indiana’s reliance on coal-fired

generation. The state also exhibits elevated industrial emissions and lower reliance on natural gas

and petroleum relative to control states. Following the 2011 treatment year, Indiana’s emissions

declined across all major categories. In the post-treatment period, the state’s average total CO2

emissions fell to 183.07 MMT, a reduction of over 40 MMT from the pre-period level. Coal emissions

dropped substantially (from 145.63 to 93.36 MMT), and electric power emissions similarly declined

(from 118.50 to 86.14 MMT), suggesting significant shifts in the state’s energy mix and emissions

profile. While Indiana remained more carbon-intensive than control states, the post-policy decline

suggests a meaningful change associated with the treatment.

In contrast, economic and demographic indicators show more modest differences. Indiana’s

pre-treatment average log real GDP is 12.59, close to the control group’s 11.87, and its population

growth rate (2.03%) is moderately higher than that of the control group (1.17%). These similarities

help ensure comparability in baseline characteristics before the enforcement event in 2009.

5 Results

5.1 Synthetic difference in difference estimation

Figure 3 presents the SDID estimates comparing Indiana to a synthetic control group across multiple

categories of energy-related CO2 emissions. Panel (a) displays the trajectory of total emissions,

while Panels (b) through (d) disaggregate these emissions into coal, natural gas, and petroleum

sources, respectively. As shown in Panel (a), Indiana’s total energy-related CO2 emissions began

to diverge markedly from the synthetic control group shortly after the 2011 treatment issued

against the Gallagher coal-fired power plant. According to the settlement terms, Duke Energy was

required to either permanently shut down or repower Units 1 and 3 to burn natural gas, and to

install pollution controls on the remaining units (EPA, 2009b). Panel (b) confirms a sharp post-

treatment decline in coal-related emissions in Indiana, consistent with the mandated reduction in

coal combustion. Panel (c) shows a moderate increase in natural gas-related emissions, suggesting

fuel switching as a compliance strategy. This is in line with the EPA settlement requirement that

allowed repowering of coal units to burn natural gas as an alternative to permanent shutdown.

Panel (d) shows that petroleum-related emissions remained relatively flat in both Indiana and

the control group throughout the study period. Overall, the results indicate that the observed
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(a) Total energy-related (b) Coal energy-related

(c) Natural gas energy-related (d) Petroleum energy-related

Figure 3: Outcome Trends and Time-Specific Weights (fuel specific emission). (a)–(d) show treatment and control
comparisons across different outcomes.

reduction in total emissions was primarily driven by a targeted decrease in coal use, partially offset

by increased reliance on natural gas, with no significant changes in other fuel sources.

Table 2 reports the estimated ATT for Indiana across fuel-specific categories of energy-related

CO2 emissions, using three alternative estimation strategies: SDID, SC, and traditional DID.

Consistent with the visual trends presented in Figure 3, the SDID estimates indicate a substantial

and statistically significant reduction in both total energy-related emissions (-31.073, p < 0.1) and

coal-related emissions (-16.080, p < 0.05), following the 2011 enforcement action. In contrast,

treatment effects for natural gas and petroleum-related emissions are small and not statistically

significant, supporting the interpretation that the overall emissions reduction was largely driven

by a shift away from coal.

Statistical significance here implies that the estimated effects are unlikely to have arisen by

chance under the null hypothesis of no treatment effect (Arkhangelsky et al., 2021; Clarke et al.,

11



Synthetic Diff. in Diff Synthetic Control Diff. in Diff.

Total energy-related carbon dioxide emission

ATT -31.073∗ -23.638 -37.125 -18.864 -39.424∗∗∗ -38.559∗∗∗

Standard error (17.182) (17.040) (25.084) (62.469) (12.323) (12.456)

Coal energy-related carbon dioxide emission

ATT -16.080∗∗ -10.913∗∗ -20.958∗ -12.950 -43.601∗∗∗ -42.485∗∗∗

Standard error (6.861) (6.828) (11.698) (12.054) (10.270) (10.529)

Natural gas energy-related carbon dioxide emission

ATT 6.225 6.022 -4.355 4.823 8.656∗ 8.521∗

Standard error (5.055) (6.490) (12.400) (21.568) (4.617) (4.628)

Petroleum energy-related carbon dioxide emission

ATT -2.467 -2.499 -6.292 -3.002 -4.482 -4.595

Standard error (10.169) (10.311) (14.638) (17.899) (7.320) (7.284)

Covariates ✓ ✓ ✓

Time FE ✓ ✓ ✓ ✓ ✓ ✓

State FE ✓ ✓ ✓ ✓

Table 2: Estimates for the fuel-specific average treatment effect on the treated (ATT) on Indiana. We employ the
placebo-based standard error estimator. Placebo treatments in estimation is to control units and compute the distribution
of placebo estimates τ̂p to approximate the sampling variability of the estimator. The variance estimate is given by

V̂placebo(τ̂) = Var(τ̂p), and a (1− α) level confidence interval is contructed as τ̂ ± zα/2

√
V̂placebo(τ̂), where zα/2 denotes

the standard normal critical value (Arkhangelsky et al., 2021; Clarke et al., 2024). Standard errors are reported in
parentheses. Statistical significance at the 1%, 5%, and 10% levels is denoted by ∗∗∗, ∗∗, and ∗, respectively.

2024). The p-values are derived using a placebo-based inference method, in which Indiana’s

estimated ATT is compared to a distribution of placebo ATTs generated by applying the same

SDID procedure to control states. The fact that the actual estimates fall in the tails of this empirical

distribution strengthens the interpretation of a real treatment effect attributable to the Gallagher

settlement.

Notably, SDID yields smaller standard errors relative to the other estimators across all outcome

categories, reflecting the estimator’s improved precision due to its reweighting mechanism and

covariate adjustment. The statistical significance of the SDID estimates—especially for coal-related

emissions—corroborates the visual divergence shown in Figure 3 (b), reinforcing the causal inter-

pretation that the Gallagher plant settlement produced a targeted and sustained reduction in coal

combustion emissions.
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(a) Commercial energy-related (b) Electric power energy-related

(c) Industrial energy-related (d) Residential energy-related

(e) Transportation energy-related

Figure 4: Outcome Trends and Time-Specific Weights (sectoral specific emission). (a)–(e) show treatment and control
comparisons across different outcomes.

Figure 4 shows the SDID estimates for Indiana and its synthetic control group across five

economic sectors: commercial, electric power, industrial, residential, and transportation. Consistent

with the fuel-specific patterns reported in Figure 3, the most notable divergence occurs in the
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Synthetic Diff. in Diff Synthetic Control Diff. in Diff.

Commercial energy-related carbon dioxide emission

ATT -0.207 -0.295 0.571 -0.402 -0.169 -0.267

Standard error (0.999) (1.004) (0.753) (1.152) (1.842) (1.834)

Electric power energy-related carbon dioxide emission

ATT -19.466∗∗∗ -13.436∗∗ -14.690∗ -13.661 -26.137∗∗∗ -25.438∗∗∗

Standard error (4.768) (5.430) (8.637) (24.306) (8.389) (8.409)

Industrial energy-related carbon dioxide emission

ATT -9.717∗ -7.944 -10.695 -7.353 -8.595∗∗∗ -8.225∗∗∗

Standard error (5.335) (6.812) (12.532) (29.323) (3.050) (3.203)

Residential energy-related carbon dioxide emission

ATT 0.129 0.023 0.170 -0.187 -0.591 -0.689

Standard error (0.655) (0.589) (2.078) (1.765) (0.846) (0.868)

Transportation energy-related carbon dioxide emission

ATT -2.113 0.240 -2.729 0.808 -3.391 -3.940

Standard error (7.189) (7.585) (9.529) (7.110) (5.210) (5.020)

Covariates ✓ ✓ ✓

Time FE ✓ ✓ ✓ ✓ ✓ ✓

State FE ✓ ✓ ✓ ✓

Table 3: Estimates for sectoral-specific average treatment effect on the treated (ATT) on Indiana. We employ the
placebo-based standard error estimator. Placebo treatments in estimation is to control units and compute the distribution
of placebo estimates τ̂p to approximate the sampling variability of the estimator. The variance estimate is given by

V̂placebo(τ̂) = Var(τ̂p), and a (1− α) level confidence interval is contructed as τ̂ ± zα/2

√
V̂placebo(τ̂), where zα/2 denotes

the standard normal critical value (Arkhangelsky et al., 2021; Clarke et al., 2024). Standard errors are reported in
parentheses. Statistical significance at the 1%, 5%, and 10% levels is denoted by ∗∗∗, ∗∗, and ∗, respectively.

electric power sector (Panel b), where Indiana’s emissions declined substantially relative to the

control group following the 2011 intervention. This is expected, given that the Gallagher plant

operated as a coal-fired power generator and was subject to the consent decree requiring shutdown

or conversion of key units. Panel (c) reveals a statistically meaningful decline in industrial energy-

related emissions as well, suggesting that downstream industrial demand may have responded to

changes in power generation or related regulatory spillovers.

By contrast, Panels (a), (d), and (e) display relatively parallel trajectories between Indiana

and the control group in the commercial, residential, and transportation sectors, with no visible
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post-treatment divergence. These results underscore that the emissions reductions observed in

Indiana were concentrated in the sectors most directly affected by the Gallagher enforcement,

particularly electric power, while other sectors remained largely unaffected by the intervention.

Table 3 reports the estimated ATT for Indiana across five economic sectors using SDID, SC, and

traditional DID estimators. The results show that the most pronounced and statistically significant

reductions in CO2 emissions occurred in the electric power (-19.466, p < 0.01) and industrial sectors

(-9.717, p < 0.1) under the SDID specification. These findings are consistent with the visual evidence

presented in Figure 4, which highlights a clear post-treatment divergence between Indiana and its

synthetic control in these two sectors. The electric power sector results reflect the direct regulatory

intervention at the Gallagher plant, while the industrial decline may stem from indirect responses

to structural changes in electricity generation.

By contrast, the estimated ATT values for the commercial, residential, and transportation

sectors are small and statistically insignificant, suggesting that the 2011 intervention had limited

impact outside the energy production and industrial domains. Notably, the SDID estimator again

yields smaller or comparable standard errors relative to the other two estimators, underscoring its

precision advantage. These results collectively suggest that the policy’s emissions-reducing effects

were concentrated in the sectors most directly tied to coal-based power generation.

This interpretation is further supported by the unit weights (ω̂) reported in Tables A2 and

A3. These tables illustrate how the SDID estimator constructs synthetic control units by assigning

non-zero weights across a broader and more diverse set of donor states compared to the traditional

SC method. In the fuel-specific setting (Table A2), SC often relies on only a handful of states (e.g.,

Texas or Illinois) with disproportionately large weights, while assigning near zero to most others.

By contrast, SDID distributes weights more evenly across relevant donor units such as Mississippi,

Pennsylvania, or Arizona—states that better match Indiana’s pre-treatment trends in coal and total

emissions. A similar pattern is observed in the sectoral-specific setting (Table A3), where SDID

assigns meaningful weights to states like California, Georgia, and Illinois across the electric power

and industrial sectors, reflecting their greater relevance for constructing a credible counterfactual.

These differences in weight structures highlight the key advantage of SDID: its ability to flexibly

reweight both units and time periods while incorporating covariate adjustment to improve pre-

treatment balance. Unlike SC, which requires the treated unit to lie within the convex hull of donor

units and thus excludes many potential controls, SDID relaxes this constraint and yields a better

approximation of the treated unit’s counterfactual trajectory. This richer support helps mitigate

15



sensitivity to outlier units and improves robustness, which in turn explains the consistently smaller

standard errors seen in Tables 2 and 3.

5.2 Event Study Analysis

We estimate dynamic treatment effects using an event study specification based on SDID, following

the approach outlined by Clarke et al. (2024). The event-time ATT is computed as the difference

between treated and synthetic control series for each year t, normalized by the pre-treatment

average. Formally, for each post-treatment year t, we define the event-time ATT as:

δ̂t =
(
Y treated
t − Y control

t

)
−
∑
s<t0

λs

(
Y treated
s − Y control

s

)
, (8)

where t0 is the treatment year, and λs are the SDID time weights over the pre-treatment periods. To

capture uncertainty in δ̂t, we implement clustered bootstrap resampling over units and compute

pointwise 95% confidence intervals for each year.

Figure 5 displays the estimated event-time effects across four energy-related outcomes. Panels

(a) and (b) show that total and coal-related CO2 emissions in Indiana began to diverge sharply

from their synthetic control counterparts immediately after the 2011 policy intervention. These

declines persist over the post-treatment period and are statistically distinguishable from zero across

most years, indicating a sustained treatment effect consistent with the mandated reductions in coal

combustion following the Gallagher consent decree.

In contrast, Panels (c) and (d) show no significant pre- or post-treatment dynamics for natural gas

and petroleum emissions. The point estimates fluctuate around zero, and the 95% confidence bands

consistently include the null. These results support the conclusion that the observed reductions

in aggregate emissions were primarily driven by the decline in coal use, with little evidence of

substitution or spillover effects to other fuel categories.

Figure 6 presents event study estimates of dynamic treatment effects for Indiana across five

economic sectors. Each panel plots the yearly deviation between Indiana and its synthetic control,

centered relative to the pre-treatment mean. In line with the results reported in Table 3, the most

notable and statistically significant reductions in CO2 emissions are observed in the electric power

(Panel b) and industrial (Panel c) sectors. In these two sectors, the point estimates fall below

zero shortly after the 2011 intervention and remain persistently negative, with most estimates

statistically different from zero at the 95% confidence level. These patterns suggest a sustained
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(a) Total energy-related (b) Coal energy-related

(c) Natural gas energy-related (d) Petroleum energy-related

Figure 5: Event Studies (fuel specific emission). (a)–(d) show event studies acorss different outcomes.

policy effect in sectors directly or indirectly linked to coal-based energy production.

In contrast, the commercial (Panel a), residential (Panel d), and transportation (Panel e) sectors

exhibit no statistically significant deviations from the synthetic control group throughout the

post-treatment period. Point estimates in these sectors fluctuate narrowly around zero, and the

corresponding confidence intervals consistently include the null. These results reinforce the

interpretation that the emissions reductions induced by the Gallagher settlement were concentrated

within the energy production and industrial use sectors, with little to no spillover into the broader

economy.
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(a) Commercial energy-related (b) Electric power energy-related

(c) Industrial energy-related (d) Residential energy-related

(e) Transportation energy-related

Figure 6: Event Studies (sectoral specific emission). (a)–(e) show event studies acorss different outcomes.
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5.3 Staggered Adoption Analysis

While the Indiana Gallagher plant case offers a clear and discrete intervention point, other states

have also undertaken partial coal plant shutdowns or conversions over the past two decades. To

extend the policy relevance of our findings, we estimate a staggered adoption specification in which

the treatment group includes not only Indiana, but also 14 additional states that implemented major

coal-fired unit retirements at varying points in time. Each treated unit is assigned its own adoption

year, defined as the first year a key coal unit was permanently decommissioned or repowered to

natural gas.

This staggered treatment timing presents a methodological challenge, as traditional DID and

SDID frameworks typically assume a single, uniform treatment onset. To address this, we adapt the

SDID estimator to accommodate staggered adoption, following recent extensions by Arkhangelsky

et al. (2021) and Clarke et al. (2024). Specifically, we estimate separate treatment effects for each

adoption cohort a ∈ A by aligning units by their treatment initiation time and constructing synthetic

controls using pre-treatment periods specific to each group. The overall ATT is then computed as a

weighted average of these cohort-specific estimates:

ÂTT =
∑
a∈A

T a
post

Tpost
× τ̂a (9)

where T a
post is the number of post-treatment periods for cohort a, and Tpost is the total number of

post-treatment observations across all treated units (Arkhangelsky et al., 2021; Clarke et al., 2024).

This approach allows us to flexibly recover a global ATT while respecting the heterogeneity in

treatment timing.

Table 4 reports the ATT for this staggered setting across total CO2 emissions, coal-related

emissions, and electric power emissions. We estimate three specifications: one without covariates,

one with time-varying covariates (GDP and population growth), and a third using the Kranz-style

projection method (Kranz, 2022) to adjust for covariates 4 . The projection method proposed by

Kranz (2022) offers an alternative to the residualization approach used in Arkhangelsky et al. (2021)

(Clarke et al., 2024). Rather than regressing outcomes on covariates across the entire sample, Kranz

suggests first estimating a fixed effects regression of Yit = X ′
itβ + γt + µi + uit using only untreated

observations, then projecting out the estimated covariate effects X ′
itβ̂ from all units. This approach

avoids potential bias that may arise when treated units influence the estimation of β̂, particularly

4τ̂a for each cohorts (a ∈ A) are denoted in Tables A4 and A5.
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without Covariate with Covariate Projection Method

Total energy-related carbon dioxide emission

ATT -5.208 -5.600 -4.781

Standard error (3.386) (3.601) (3.197)

Coal energy-related carbon dioxide emission

ATT -6.195∗ -6.546∗ -6.227∗

Standard error (3.265) (3.710) (3.546)

Electric power energy-related carbon dioxide emission

ATT -3.806∗∗ -4.235∗∗ -3.838∗∗

Standard error (1.703) (1.848) (1.780)

Industrial energy-related carbon dioxide emission

ATT -1.873∗∗ -2.026∗∗ -1.559∗∗

Standard error (0.739) (0.850) (0.762)

Time FE ✓ ✓ ✓

State FE ✓ ✓ ✓

Table 4: Synthetic difference in differences estimates with staggered adoption. Standard errors are clustered at the
unit level and computed using bootstrap methods. The third column applies the Kranz-style projection method, which
adjusts for covariates by projecting them out based on untreated observations (Kranz, 2022; Clarke et al., 2024). Standard
errors are reported in parentheses. Statistical significance at the 1%, 5%, and 10% levels is denoted by ∗∗∗, ∗∗, and ∗,
respectively. Other fuel and sectoral estimations are in the Appendix Table A6.

when treatment timing is staggered or correlated with covariate paths.

Our results show that this projection method produces estimates that are consistent with our

main findings: significant reductions in coal-related emissions (ATT: −5.891 and −5.839 MMT)

and electric power emissions (ATT: −3.523 and −3.564 MMT) across treated states. These effects

are statistically significant at conventional levels. Total CO2 emissions also decline (ATT: −5.394

and −4.895 MMT), though the estimates are less precisely estimated and fall short of significance

in some specifications, possibly reflecting heterogeneity in treatment intensity or fuel mix across

states.

Overall, this staggered analysis reinforces our earlier results and suggests that coal plant retire-

ments—whether driven by federal enforcement or broader economic and regulatory pressures—can

yield substantial and measurable reductions in energy-related CO2 emissions, particularly in the

power generation sector. Moreover, the comparison between residualization and projection meth-

ods highlights the importance of careful covariate adjustment when using SDID in the presence of
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treatment heterogeneity.

6 Valuation of Environmental Consumer Surplus

The preceding staggered adoption analysis highlights significant and sustained reductions in carbon

emissions resulting from regulatory enforcement at coal-fired power plants. To complement these

findings and provide comprehensive insights for policymakers, this section conducts a detailed

welfare analysis quantifying the ECS. By estimating the economic value of reduced emissions

through avoided climate damages, we capture a broader scope of societal benefits beyond the

immediate emission reductions documented in the preceding analysis.

Environmental consumer surplus represents the economic welfare gained by society from

improvements in environmental quality, specifically reductions in carbon emissions. Following

widely accepted practices in environmental and climate economics, ECS is defined as the aggregate

societal benefit obtained by integrating the marginal damage (MD) function over the range of

emissions reductions achieved (Greenstone and Jack, 2015; Auffhammer, 2018):

ECS =

∫ Epost

Epre

MD(E) dE (10)

Here, Epre and Epost denote emission levels before and after policy enforcement, respectively,

while MD(E) captures the incremental societal damages resulting from each additional unit of

emissions. Marginal damages reflect the monetized value of negative externalities, including

climate-related losses such as increased severity of weather extremes, human health effects, ecolog-

ical degradation, and agricultural impacts.

Given the global and long-term nature of carbon externalities, estimating a precise marginal

damage curve is empirically challenging. Accordingly, a widely accepted approach in both aca-

demic and policy contexts is to use the SCC as a proxy for marginal damage. The SCC represents

the present value of monetized damages from an incremental ton of CO2 emissions, incorporat-

ing uncertainty about future climate responses, economic growth trajectories, and discounting

parameters (Nordhaus, 2017; House, 2021; Rennert et al., 2022).

Following the guidance of the Interagency Working Group on Social Cost of Greenhouse Gases,

we adopt the central SCC estimate of $51 per ton of CO2, adjusted to 2020 dollars. Treating SCC

as constant over the observed range of emission reductions enables a tractable yet policy-relevant
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Indiana (SDID) U.S. (Staggered-SDID)

Total energy-related carbon dioxide emission

$ 15.77

Coal energy-related carbon dioxide emission

$ 8.16 $ 3.94

Electric power energy-related carbon dioxide emission

$ 9.88 $ 2.11

Industrial energy-related carbon dioxide emission

$ 4.93 $ 1.33

(Unit: billion)

Table 5: Cumulative environmental consumer surplus (NPV) over the treatment. For Indiana, ECS values are derived
from the SDID estimates with covariates. For the U.S., ECS values are computed using the SDID with a staggered
adoption. We omit the national total ECS estimate, as the aggregate emission reduction effect was not statistically
significant in the corresponding estimates (see Table 4). All monetary values are in 2020 billion USD.

estimation of annual ECS for each treated unit a:

ECSannual
a = τ̂a × 106 tons/MMT × $51/ton (11)

This expression yields the annual monetized climate benefit attributable to the reduction in

energy-related CO2 emissions for unit a. Recognizing the temporal dimension of policy benefits,

we extend the analysis by computing the present discounted value of these benefits over a fixed

time horizon. Specifically, we evaluate the cumulative ECS for each treated unit using a standard

3% social discount rate over a 10-year post-treatment window, consistent with economic evaluation

principles in climate policy (Goulder and WILLIAMS III, 2012; Rennert et al., 2022). The resulting

expression accounts for the share of post-treatment years observed for each unit relative to the full

post-period:

ECStotal
a =

∑
a∈A

T a
post

Tpost

T∑
t=Tpre+1

ECSannual
a

(1 + 0.03)t−Tpre
(12)

This formulation flexibly accommodates staggered treatment timing across units by proportion-

ally weighting each treated unit’s contribution based on its observed exposure to the post-policy

period. It allows us to aggregate the net present value of environmental welfare gains across
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heterogeneous adoption timelines 5.

Table 5 summarizes the estimated cumulative environmental consumer surplus for Indiana and

the U.S., using the SDID estimates with covariates and the staggered-SDID approach, respectively.

For Indiana, we estimate a total ECS of $15.77 billion over the treatment horizon, driven primarily

by reductions in emissions from coal and industrial sectors. In the U.S.-wide staggered setting,

we provide sector-specific ECS estimates for the coal and industrial categories, which exhibit

statistically significant reductions in emissions. However, we do not report a national total ECS

value, as the aggregate post-treatment effect on total emissions was not statistically distinguishable

from zero in the staggered-SDID analysis (see Table 4).

Taken together, these welfare estimates underscore the substantial economic value of emission

reductions achieved through regulatory enforcement. Beyond documenting statistically significant

decreases in carbon emissions, this analysis provides a monetary valuation of the associated

climate benefits, reinforcing the broader societal importance of such environmental regulations. By

incorporating staggered adoption dynamics and formally monetizing avoided climate damages,

this section complements the emission reduction findings and offers a more holistic picture of

policy effectiveness from a welfare economics perspective.

7 Discussion and Conclusion

This study evaluates the effectiveness of environmental enforcement actions in reducing carbon

dioxide emissions, using the 2009 consent decree at Duke Energy’s Gallagher coal plant as a

quasi-experimental case. Utilizing the SDID estimator of Arkhangelsky et al. (2021), we identify

significant and persistent reductions in both total and coal-specific carbon emissions at the state

level. Our results confirm that legally mandated fuel switching and plant retirements can yield

substantial emissions reductions, particularly within historically coal-dependent electric power

sectors.

Specifically, the Gallagher consent decree resulted in an approximately 16 MMT reduction in

coal-related emissions and a nearly 20 MMT reduction in emissions from the electric power sector

in Indiana. These outcomes highlight the effectiveness of targeted regulatory interventions under

the Clean Air Act, not only in addressing local air pollution but also in achieving meaningful

5When considering a single treated unit (i.e., a = 1), the expression simplifies as τ̂a = τ̂ and T a
post = Tpost, reducing

the cumulative ECS calculation to ECStotal =
∑Tpost

t=Tpre+1 ECSannual/(1 + 0.03)t−Tpre .
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climate-related benefits. The concentration of observed emission reductions within sectors directly

affected by the enforcement actions further underscores the precision and efficacy of regulatory

mandates in inducing significant structural changes in emissions-intensive sectors.

To assess the broader applicability and generalizability of our findings, we expanded the

analysis to a staggered adoption setting involving 14 additional states that experienced similar

coal unit retirements. The staggered SDID framework reveals consistent emission declines across

these states, reinforcing the robustness of our main findings. Importantly, methodological insights

from our study demonstrate that the projection-based covariate adjustment method introduced by

Kranz (2022) significantly enhances estimation precision compared to conventional residualization,

particularly in staggered adoption contexts. This methodological contribution provides valuable

guidance for empirical researchers examining heterogeneous environmental policy interventions.

The welfare implications of our analysis further deepen the policy relevance of these findings.

By calculating the ECS using a standardized SCC, we translate the emissions reductions into

monetary terms, estimating cumulative societal benefits of approximately $15.77 billion for Indiana

over a ten-year policy horizon. Additionally, in the staggered adoption scenario across multiple

states, we observe meaningful sector-specific welfare gains totaling approximately $3.94 billion and

$2.11 billion for coal-related and electric power emissions, respectively. These welfare estimates

offer critical insights for policymakers by quantifying the economic value of regulatory enforcement

beyond mere emissions reductions, emphasizing the substantial climate benefits achievable through

targeted legal mandates.

Our results hold significant implications for climate policy formulation. Regulatory enforcement

actions, such as mandated shutdowns or repowering of legacy coal infrastructure, can complement

market-based instruments like carbon pricing schemes by delivering immediate, targeted, and sub-

stantial emissions reductions. These regulatory strategies are particularly relevant as policymakers

strive toward ambitious net-zero emissions targets. By clearly demonstrating the effectiveness and

economic benefits of enforcement-based policy tools, our findings provide actionable evidence that

such interventions should play a central role in comprehensive climate strategies.

Future research avenues remain promising, including investigating firm-level compliance costs

associated with enforcement actions, analyzing the impacts on electricity market dynamics, and

evaluating public health outcomes due to reduced local air pollutants. Moreover, leveraging

satellite-based pollution monitoring data and incorporating granular air quality metrics could

provide additional insights into the environmental co-benefits of regulatory actions. By examining
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these dimensions, researchers can further elucidate the broader societal and economic implications

of targeted environmental enforcement.

In conclusion, our analysis robustly demonstrates that regulatory enforcement under the Clean

Air Act not only significantly curbs emissions but also delivers substantial economic welfare gains

through reduced climate damages. These insights underscore the integral role enforcement-based

interventions can play in achieving ambitious climate goals, offering policymakers clear pathways

to accelerate the transition toward sustainable energy systems.
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Appendix

A Additional Figures and Tables

State Year Coal-Fired Power Plant Settlement

Alabama 2013 Tennessee Valley Authority Clean Air Act Settlement

Florida 2000 Tampa Electric Company (TECO) Clean Air Act (CAA) Settlement

Iowa 2015 Interstate Power and Light Company Clean Air Act Settlement

Kentucky 2017 Tennessee Valley Authority Clean Air Act Settlement

Louisiana 2012 Louisiana Generating Settlement

Michigan 2016 Consumers Energy Clean Air Act Settlement

Minnesota 2015 Minnesota Power Settlement

New Jersey 2007 PSEG Fossil L.L.C. Settlement

New Mexico 2015 Four Corners Power Plant Clean Air Act Settlement

North Carolina 2015 Duke Energy Corporation Clean Air Act Settlement

Ohio 2012 American Municipal Power Clean Air Act Settlement

Tennessee 2012 Tennessee Valley Authority Clean Air Act Settlement

Virginia 2003 Virginia Electric and Power Company Clean Air Act Settlement

Wisconsin 2003 Wisconsin Electric Power Company Clean Air Act Civil Settlement

Table A1: List of 14 Treated States in Staggered Adoption Analysis and Their Treatment Onset Years
This table lists the 14 U.S. states included in the staggered adoption analysis. The year indicates the first
recorded coal-fired unit retirement or refueling associated with a Clean Air Act enforcement settlement.
Settlement information is sourced from the U.S. Environmental Protection Agency’s Coal-Fired Power Plant
Enforcement records EPA (2023).
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Total Coal Natural gas Petroleum
SDID SC SDID SC SDID SC SDID SC

Alaska 0.0371 0.0019 0.00003 0 0.0380 0.0005 0.0185 0.00003
Arizona 0.1927 0.0019 0.00003 0 0.0144 0.0005 0.0104 0.2594
Arkansas 0.0003 0.0019 0.00003 0 0.0341 0.0005 0.0249 0.00003
California 0.0625 0.0019 0.00003 0 0.0015 0.0005 0.0441 0.00003
Colorado 0.0206 0.0025 0.0055 0 0.0015 0.0005 0.0036 0.0015
Connecticut 0.0003 0.0121 0.00003 0 0.0290 0.0005 0.0465 0.00003
Delaware 0.0003 0.0019 0.00003 0 0.0290 0.0005 0.0309 0.00003
District of Columbia 0.0003 0.0019 0.00003 0 0.0293 0.0005 0.0291 0.00003
Georgia 0.0421 0.0019 0.0736 0 0.0365 0.1828 0.0080 0.00003
Hawaii 0.0003 0.0019 0.00003 0 0.0262 0.0005 0.0201 0.00003
Idaho 0.0133 0.0371 0.00003 0 0.0235 0.0005 0.0209 0.1034
Illinois 0.1043 0.3395 0.0642 0 0.0619 0.1461 0.0050 0.00003
Kansas 0.0703 0.2203 0.1228 0 0.0258 0.0005 0.0421 0.4049
Maine 0.0230 0.0019 0.00003 0 0.0050 0.0005 0.0546 0.00003
Maryland 0.0269 0.0019 0.0245 0 0.0412 0.0080 0.0289 0.0020
Massachusetts 0.0163 0.0019 0.00003 0 0.0412 0.0005 0.0484 0.0002
Mississippi 0.3119 0.1378 0.1091 0 0.0197 0.0005 0.0330 0.00003
Missouri 0.0203 0.0019 0.00003 0 0.0299 0.0005 0.0351 0.00003
Montana 0.0005 0.0193 0.00003 0 0.0266 0.0005 0.0206 0.00009
Nebraska 0.0003 0.0019 0.00003 0 0.0239 0.0005 0.0236 0.00003
Nevada 0.0003 0.0019 0.00003 0 0.0227 0.0005 0.0036 0.00003
New Hampshire 0.0228 0.0019 0.00003 0 0.0368 0.0005 0.0394 0.00003
New York 0.0528 0.0019 0.0359 0 0.0376 0.0005 0.0329 0.00003
North Dakota 0.0190 0.0019 0.00003 0 0.0288 0.0005 0.0108 0.00003
Oklahoma 0.0427 0.0019 0.0033 0 0.0367 0.0005 0.0105 0.00003
Oregon 0.0055 0.0019 0.00003 0 0.0260 0.0005 0.0350 0.00003
Pennsylvania 0.0893 0.0019 0.2643 0 0.0572 0.3505 0.0545 0.00003
Rhode Island 0.0003 0.0019 0.00003 0 0.0219 0.0005 0.0303 0.00003
South Carolina 0.0450 0.0019 0.0936 0 0.0258 0.0005 0.0047 0.00003
South Dakota 0.0003 0.0019 0.00003 0 0.0290 0.0005 0.0257 0.00003
Texas 0.1500 0.1786 0.1156 1 0.0307 0.0529 0.0635 0.0001
Utah 0.0003 0.0019 0.00003 0 0.0217 0.0005 0.0260 0.00003
Vermont 0.0025 0.0019 0.00003 0 0.0272 0.0005 0.0269 0.00003
Washington 0.0098 0.0019 0.00003 0 0.0086 0.2443 0.0446 0.2277
West Virginia 0.0644 0.0019 0.0866 0 0.0234 0.0005 0.0210 0.00003
Wyoming 0.0056 0.0019 0.00003 0 0.0275 0.0005 0.0221 0.00003

Table A2: Unit weights for synthetic difference-in-differences and synthetic control (fuel-specific).
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Commercial Electric Industrial Residential Transportation
SDID SC SDID SC SDID SC SDID SC SDID SC

Alaska 0.0049 0.00003 0.0463 0.0044 0.0225 0.0002 0.0099 0.00004 0.0616 0.00002
Arizona 0.0208 0.00003 0.0081 0.0088 0.0034 0.0002 0.0186 0.1221 0.00008 0.1254
Arkansas 0.0376 0.00003 0.0002 0.0044 0.0101 0.0002 0.0304 0.00004 0.0223 0.00002
California 0.0277 0.00003 0.1134 0.2107 0.1355 0.0002 0.0663 0.00008 0.0056 0.00008
Colorado 0.0483 0.00003 0.0002 0.0044 0.1139 0.0072 0.0048 0.00004 0.00008 0.00002
Connecticut 0.0198 0.00003 0.0002 0.0044 0.0034 0.0002 0.0224 0.00004 0.0053 0.0589
Delaware 0.0196 0.00003 0.0002 0.0044 0.0073 0.0002 0.0250 0.00004 0.0036 0.00002
District of Columbia 0.0128 0.00003 0.0002 0.0044 0.0002 0.0002 0.0189 0.00004 0.0044 0.00002
Georgia 0.0217 0.0005 0.0546 0.0752 0.0671 0.1822 0.0158 0.00004 0.00008 0.00002
Hawaii 0.0155 0.0673 0.0002 0.0044 0.0002 0.0002 0.0102 0.00004 0.0362 0.00002
Idaho 0.0135 0.0800 0.0002 0.0044 0.0219 0.3798 0.0076 0.5634 0.0315 0.0313
Illinois 0.1239 0.0003 0.0791 0.0044 0.0002 0.0002 0.1130 0.00004 0.00008 0.00002
Kansas 0.0237 0.00003 0.0444 0.0044 0.0655 0.0209 0.0358 0.00004 0.0731 0.4860
Maine 0.0475 0.00003 0.0181 0.0044 0.0057 0.0002 0.0340 0.0627 0.0303 0.00002
Maryland 0.0364 0.00003 0.0288 0.0044 0.0487 0.0002 0.0390 0.00004 0.00008 0.00002
Massachusetts 0.0514 0.00003 0.0002 0.0044 0.0519 0.0002 0.0489 0.00004 0.0372 0.0009
Mississippi 0.0212 0.00003 0.0308 0.0044 0.0687 0.2973 0.0205 0.00004 0.0638 0.00002
Missouri 0.0162 0.00003 0.0407 0.0044 0.0621 0.0002 0.0335 0.00004 0.0655 0.00002
Montana 0.0323 0.0972 0.0190 0.0044 0.0002 0.0002 0.0090 0.00004 0.0219 0.00002
Nebraska 0.0377 0.00003 0.0022 0.0044 0.0174 0.0002 0.0204 0.00004 0.0237 0.00002
Nevada 0.0161 0.00003 0.0002 0.0044 0.0002 0.0006 0.0167 0.00004 0.00008 0.0014
New Hampshire 0.0284 0.00003 0.0144 0.0044 0.0366 0.1708 0.0287 0.00004 0.0124 0.00002
New York 0.0686 0.00003 0.0095 0.0044 0.0002 0.0016 0.0551 0.0004 0.00008 0.00002
North Dakota 0.0238 0.00003 0.0155 0.0044 0.0217 0.0002 0.0129 0.00004 0.0625 0.00002
Oklahoma 0.0188 0.00003 0.0231 0.0044 0.0145 0.0002 0.0276 0.00004 0.0326 0.00002
Oregon 0.0072 0.00003 0.0252 0.0044 0.0002 0.0002 0.0205 0.00004 0.0171 0.00002
Pennsylvania 0.0069 0.4905 0.0608 0.1151 0.0445 0.0002 0.0937 0.1209 0.1126 0.00002
Rhode Island 0.0159 0.00003 0.0002 0.0044 0.0002 0.0002 0.0288 0.00004 0.00008 0.00002
South Carolina 0.0049 0.2619 0.0525 0.0044 0.0507 0.0002 0.0233 0.0016 0.00008 0.00002
South Dakota 0.0232 0.00003 0.0002 0.0044 0.0037 0.0002 0.0204 0.00004 0.0425 0.00002
Texas 0.0730 0.00003 0.1007 0.4465 0.0712 0.1108 0.0220 0.00004 0.00008 0.00002
Utah 0.0189 0.00003 0.0002 0.0044 0.0002 0.0002 0.0048 0.00004 0.0212 0.0835
Vermont 0.0135 0.00003 0.0075 0.0044 0.0247 0.0051 0.0180 0.00004 0.0131 0.00002
Washington 0.0234 0.00040 0.0412 0.0044 0.0002 0.0002 0.0048 0.0002 0.0563 0.2118
West Virginia 0.0070 0.0010 0.1293 0.0127 0.0256 0.0002 0.0245 0.1275 0.0775 0.00002
Wyoming 0.0178 0.00003 0.0324 0.0044 0.0002 0.0002 0.0141 0.00004 0.0655 0.00006

Table A3: Unit weights for synthetic difference-in-differences and synthetic control (sectoral-specific).
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Total Coal
cohort (a ∈ A) w/o Cov. w/ Cov. Projected w/o Cov. w/ Cov. Projected

2000 (1) 9.7192 9.6583 9.1438 -9.5277 -10.709 -10.090
(1.1184) (1.2049) (1.0903) (3.7849) (3.7714) (3.6460)

2003 (2) -1.8860 -0.9686 -1.2205 -7.9817 -7.5445 -7.5900
(2.0055) (1.9433) (1.8442) (3.7971) (4.3269) (4.2238)

2007 (1) -10.396 -10.438 -9.1503 0.0539 0.8998 0.6419
(1.9365) (2.0321) (2.3888) (1.0538) (1.7950) (2.6256)

2011 (1) -23.638 -31.282 -22.113 -10.913 -16.202 -12.687
(7.4453) (7.9711) (6.6397) (5.6195) (8.8945) (5.6028)

2012 (3) -13.874 -13.873 -13.3294 -8.0848 -8.0696 -7.7753
(5.6997) (5.7838) (5.3068) (8.1649) (8.1162) (8.4988)

2013 (1) -8.0181 -8.6989 -7.3739 3.4919 3.3737 3.5555
(2.2557) (2.5293) (2.1471) (7.8821) (7.7925) (8.3158)

2015 (4) -0.2228 -0.3715 -0.1923 -3.1278 -3.2404 -3.3692
(2.1178) (2.0924) (1.9290) (3.5924) (4.0067) (3.7399)

2016 (1) -5.0769 -5.1922 -5.6557 -10.251 -10.161 -10.057
(1.6420) (1.6110) (1.6186) (1.3882) (1.3667) (1.5421)

2017 (1) -8.2666 -8.3890 -7.7141 -6.1182 -6.0480 -6.3009
(2.0497) (2.1872) (2.1693) (1.2906) (1.3728) (1.3409)

Natural gas Petroleum
cohort (a ∈ A) w/o Cov. w/ Cov. Projected w/o Cov. w/ Cov. Projected

2000 (1) 26.565 27.085 26.603 -4.0844 -4.1876 -4.7254
(1.4293) (1.4283) (1.2850) (1.1553) (1.3192) (1.4139)

2003 (2) 4.0621 3.7727 4.0022 0.6903 0.6402 0.8836
(2.8291) (2.7064) (2.7643) (2.2346) (2.2577) (1.7825)

2007 (1) 1.5374 1.4889 1.7141 -12.127 -12.037 -10.264
(1.9580) (2.2420) (2.5259) (1.5951) (1.4343) (1.4885)

2011 (1) 6.0221 6.2257 6.7757 -2.4987 -2.4460 -1.5282
(1.3282) (1.9069) (1.5119) (2.7938) (2.3956) (2.5723)

2012 (3) 3.8009 3.8111 3.8642 -7.8388 -7.5766 -5.6933
(3.3327) (3.4746) (3.5612) (6.2073) (5.5483) (4.7563)

2013 (1) -7.7166 -7.9183 -7.4463 0.2108 0.3152 1.2056
(5.9116) (5.9489) (6.3837) (0.8451) (0.7819) (0.5292)

2015 (4) 0.2814 0.3311 0.3676 0.6361 0.7464 0.8396
(1.8949) (1.9936) (2.0110) (0.9791) (0.9874) (0.9564)

2016 (1) 2.8304 2.6874 2.8556 -1.1957 -1.2353 -1.3731
(1.7222) (1.1724) (1.5741) (1.9266) (2.2906) (2.2170)

2017 (1) 2.0229 2.0896 2.1263 -0.7637 -1.1402 -0.2457
(0.3766) (0.5109) (0.6346) (0.5258) (0.6034) (0.6472)

Table A4: Cohort-specific average treatment effects on the treated (τa) under staggered adoption (fuel-specific). Each
cohort corresponds to a treated state and its first year of coal-fired unit retirement or refueling associated with a Clean
Air Act enforcement settlement (see Table A1). The year listed in each row denotes the treatment onset year for that state,
and the index in parentheses distinguishes multiple states sharing the same treatment year. ATT values are expressed in
million metric tons (MMT), and standard errors are reported in parentheses.
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Commercial Electric Industrial
cohort (a ∈ A) w/o Cov. w/ Cov. Projected w/o Cov. w/ Cov. Projected w/o Cov. w/ Cov. Projected

2000 (1) 2.0517 2.0548 1.9517 -1.3187 -1.3610 -1.3672 -2.2370 -2.6030 -2.7001
(0.1549) (0.1418) (0.1455) (1.7073) (1.7470) (1.5688) (0.4916) (0.5592) (0.5303)

2003 (2) 0.2754 0.2520 0.3155 -3.1617 -2.4765 -3.0149 -2.5438 -2.0486 -2.3495
(0.1624) (0.1737) (0.2515) (2.2253) (2.2697) (2.2730) (0.5187) (0.5791) (0.4001)

2007 (1) 0.7898 1.0115 1.0090 2.6291 2.8194 2.5461 -1.5214 -3.1105 -0.7581
(0.2020) (0.3137) (0.2630) (1.0169) (1.0440) (1.5419) (0.7204) (1.0509) (0.6762)

2011 (1) -0.2950 -0.2062 -0.1497 -13.436 -19.695 -13.858 -7.9442 -9.7470 -7.4776
(0.2441) (0.2589) (0.2908) (2.1292) (2.6347) (2.0740) (1.6423) (2.1012) (1.3712)

2012 (3) 0.2079 0.2301 0.2311 -8.3925 -8.3827 -8.3709 -0.5089 -0.4447 0.1174
(0.2638) (0.2667) (0.2945) (5.6993) (5.9588) (5.9354) (1.5009) (1.5485) (1.9047)

2013 (1) -0.1468 -0.1548 -0.0686 -1.6993 -1.8972 -1.7633 -2.5633 -2.5110 -2.1065
(0.0850) (0.0945) (0.0979) (2.4159) (2.3838) (2.5179) (1.1206) (1.1751) (0.9922)

2015 (4) -0.1659 -0.1856 -0.1622 -1.0688 -2.0170 -1.1961 0.5744 0.5642 0.6848
(0.2881) (0.3064) (0.2911) (1.9483) (2.0609) (2.0191) (1.0309) (1.0623) (1.1308)

2016 (1) 0.0474 0.0445 -0.0353 -4.7242 -4.6146 -4.6749 -4.1813 -3.8039 -3.1887
(0.2034) (0.2202) (0.2745) (0.3951) (0.5284) (0.4820) (2.2246) (2.1068) (1.5867)

2017 (1) -0.0714 -0.0614 0.0009 -7.3427 -7.3416 -7.4121 -0.9017 -0.9476 -0.5833
(0.0713) (0.0671) (0.0617) (1.2294) (1.2948) (1.2258) (0.6606) (0.9193) (0.6864)

Residential Transportation
cohort (a ∈ A) w/o Cov. w/ Cov. Projected w/o Cov. w/ Cov. Projected

2000 (1) 0.0599 0.0211 0.0179 12.727 13.261 12.537
(0.2872) (0.1667) (0.3064) (0.5307) (0.6202) (0.5087)

2003 (2) -0.1236 -0.1269 -0.0831 1.2483 1.1388 1.52115
(0.2105) (0.2403) (0.2991) (1.9962) (1.9705) (1.8246)

2007 (1) 0.6238 0.7207 0.7912 -8.3867 -8.0998 -7.1540
(0.2225) (0.2479) (0.2456) (2.0547) (1.9814) (1.6876)

2011 (1) 0.0234 0.1308 0.0436 0.2396 -2.2039 0.3006
(0.1727) (0.1679) (0.1606) (1.4435) (1.4428) (1.4913)

2012 (3) 0.0092 0.01435 0.1100 -0.5873 -0.6655 -0.9279
(0.1573) (0.1849) (0.2568) (3.0592) (3.0840) (2.8982)

2013 (1) -0.3251 -0.2447 -0.2090 1.1271 1.1188 1.1250
(0.0819) (0.1226) (0.1029) (0.7335) (0.7305) (0.5542)

2015 (4) 0.2267 0.2149 0.2516 0.3913 0.4026 0.4394
(0.1689) (0.1641) (0.1472) (0.0811) (0.8283) (0.8135)

2016 (1) 0.5719 0.4964 0.6462 -1.4477 -1.7756 -1.5397
(0.3158) (0.3095) (0.2995) (0.8478) (0.9565) (0.8169)

2017 (1) -0.2356 -0.2291 -0.1988 1.9541 1.9766 2.1353
(0.0642) (0.0673) (0.0492) (0.2536) (0.2389) (0.3057)

Table A5: Cohort-specific average treatment effects on the treated (τa) under staggered adoption (sectoral-specific).
Each cohort corresponds to a treated state and its first year of coal-fired unit retirement or refueling associated with a
Clean Air Act enforcement settlement (see Table A1). The year listed in each row denotes the treatment onset year for
that state, and the index in parentheses distinguishes multiple states sharing the same treatment year. ATT values are
expressed in million metric tons (MMT), and standard errors are reported in parentheses.
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without Covariate with Covariate Projection Method

Natural gas energy-related carbon dioxide emission

ATT 5.361 5.368 5.465

Standard error (3.616) (3.672) (3.709)

Petroleum energy-related carbon dioxide emission

ATT -3.014 -2.967 -2.234

Standard error (2.235) (2.028) (1.725)

Commercial energy-related carbon dioxide emission

ATT 0.376 0.397 0.410

Standard error (0.276) (0.280) (0.269)

Residential energy-related carbon dioxide emission

ATT 0.076 0.087 0.130

Standard error (0.137) (0.140) (0.150)

Transportation energy-related carbon dioxide emission

ATT 1.213 1.095 1.313

Standard error (2.488) (2.525) (2.300)

Time FE ✓ ✓ ✓

State FE ✓ ✓ ✓

Table A6: Synthetic difference in differences estimates with staggered adoption (others). Standard errors are
clustered at the unit level and computed using bootstrap methods. The third column applies the Kranz-style projection
method, which adjusts for covariates by projecting them out based on untreated observations (Kranz, 2022; Clarke et al.,
2024). Standard errors are reported in parentheses. Statistical significance at the 1%, 5%, and 10% levels is denoted by
∗∗∗, ∗∗, and ∗, respectively.
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