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Abstract

Lead in drinking water remains a serious public health risk, yet many households are still

served by public water systems with aging lead service lines. Progress on replacement has

been slow, limited by financial and logistical barriers. In 2018, Wisconsin implemented

a public infrastructure policy that offers financial assistance for voluntary lead service

line replacement, aiming to improve Safe Drinking Water Act (SDWA) compliance.

Using a synthetic difference-in-differences (SDID) method, we estimate the causal effect

of this policy intervention on SDWA violations among public water systems. We find

that Wisconsin’s policy reduced the annual number of violations by approximately 965

relative to a synthetic control. Event study confirms the robustness of these results.

This study provides new evidence on the effectiveness of state-level interventions in

the public drinking water sector and demonstrates the value of the SDID method as a

robust tool for evaluating environmental policies.
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1 Introduction

Access to safe and clean drinking water is a fundamental determinant of public health, and

the Safe Drinking Water Act (SDWA) has served as the cornerstone of public drinking

water protection in the United States since its passage in 1974 (U.S. Congress 2000). While

the regulatory framework under SDWA has led to major improvements in drinking water

quality, violations of drinking water standards remain prevalent among public water systems

(PWSs), particularly those that are smaller and under-resourced (Allaire et al. 2018, Keiser

et al. 2023). Violations may involve health-based breaches, such as exceeding maximum

contaminant levels (MCLs) for dangerous contaminants, or non-health-based failures, such

as monitoring, reporting, and public notification violations (Bennear and Olmstead 2008,

EPA-SDWIS 2024). Persistent violations not only endanger public health but also erode trust

in regulatory institutions and exacerbate environmental justice concerns, disproportionately

affecting lower-income and rural areas (Konisky and Teodoro 2016, Banzhaf et al. 2019).

Recent cases of lead contamination have underscored the vulnerability of U.S. drinking

water systems, revealing how water insecurity can exacerbate existing weaknesses and per-

petuate a cycle of systemic risk and economic disruption (Christensen et al. 2023, Scanlon

et al. 2023). For example, the Flint water crisis and growing concerns about emerging

contaminants have renewed focus on the effectiveness of regulatory oversight of water systems

(Gray et al. 2017, Wang et al. 2022, Christensen et al. 2023). In response, several policies have

been introduced to reduce regulatory violations, enhance infrastructure, and protect public

health—yet their effectiveness remains empirically underexamined. In this context, evaluating

the effectiveness of interventions aimed at reducing regulatory violations is essential not only

for informing evidence-based policy design but also for identifying pathways to strengthen

regulatory compliance and ensure reliable water service—ultimately improving long-term

public health outcomes.

This paper examines the causal impact of a 2018 Wisconsin policy that offered public

infrastructure support, specifically financial assistance to identify and replace lead service

lines (LSL)—pipes made of lead that carry public drinking water from the water main to

a home or building’s internal plumbing system. Since LSLs can contribute approximately

1



50–75% of total lead at the tap (Camara et al. 2013, Cartier et al. 2011, Sandvig et al. 2009),

full replacement is among the most effective strategies for achieving lead standards and

reducing exposure. Unlike most states, which maintained the status quo during this period,

Wisconsin’s initiative provides a rare quasi-experimental setting to evaluate the effectiveness

of the state-level financial assistance for LSL replacement (Greenstone and Gayer 2009).

Our primary research question is whether the 2018 Wisconsin policy intervention led to

a reduction in the number of SDWA violations among its public water systems, relative to

comparison states that did not implement such interventions. To address this question, we

apply a synthetic difference-in-differences (SDID) method proposed by Arkhangelsky et al.

(2021), which combines the strengths of synthetic control (SC) and difference-in-differences

(DID) approaches. The SDID estimator offers greater robustness to differential pre-trends and

time-varying unobservables than conventional DID models, rendering it well-suited for policy

evaluation in environmental and public health contexts where interventions are staggered,

localized, and potentially confounded by dynamic factors (Arkhangelsky et al. 2021).

We construct the synthetic control group from states that did not adopt significant new

drinking water policies between 2014 and 2023, excluding those that introduced major inter-

ventions such as expanded lead testing mandates, Per- and Polyfluoroalkyl Substances (PFAS)

regulations, or major enforcement reforms. Our dataset merges annual PWS-level violation

data from the Environmental Protection Agency’s (EPA) Safe Drinking Water Information

System (EPA-SDWIS 2024) and EPA/State Drinking Water Dashboard (EPA 2025a) with

state-level covariates including log real Gross Domestic Product (GDP), population growth

rates, and the percentage of public water systems receiving one or more site visits during the

review period in the selected year. These covariates proxy for economic capacity, demographic

pressure, and regulatory oversight, helping to control for confounding influences and isolate

the causal effect of Wisconsin’s policy.

By way of preview, results indicate that Wisconsin experienced a substantial and sustained

decline in SDWA violations following the 2018 intervention. While Wisconsin initially had

more violations than the control group, the gap narrowed following the policy’s implementation.

The estimated average treatment effect on the treated (ATT) suggests that Wisconsin

reduced its annual violations by approximately 965 relative to the synthetic control in the
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post-intervention period. These findings are robust to alternative donor pool specifications,

as demonstrated by placebo tests. As an additional robustness check, we limit the donor

pool to states with both Senate and House League of Conservation Voters (LCV) scores

below Wisconsin’s, using environmental political alignment as a proxy for baseline regulatory

orientation. This restriction helps mitigate potential bias arising from the inclusion of

environmentally proactive states. The larger and statistically significant treatment effect

under this restriction strengthens the robustness of our main findings.

This study contributes to the literature on public economics and environmental policy

evaluation. First, we provide new empirical evidence on state-led efforts in the drinking

water sector—a policy domain less studied than air pollution, energy policy, or climate

regulation. Second, by applying the SDID method to the context of drinking water compliance,

we demonstrate how recent advances in causal inference can be used to evaluate policies

implemented under decentralized and partially observable conditions. Third, our findings

enrich broader policy dialogues on federalism and cooperative enforcement agencies, where

state and federal actors share oversight responsibilities (Shimshack and Ward 2005, Grant

and Grooms 2017). Finally, the results provide practical guidance for policymakers seeking

to allocate limited regulatory resources to improve public water system performance.

The remainder of the paper proceeds as follows. Section 2 describes the background of

this research. Section 3 outlines the empirical strategy and variable construction. Section 4

explains the data sources and descriptive statistics of the data. Section 5 presents the main

results and robustness checks. Section 6 discusses policy implications and concludes.

2 Background

The SDWA is a federal law that regulates the safety of public drinking water supplies, covering

over 148,000 PWSs as of 2024 (EPA 2025b). It authorizes the EPA to set water quality

standards and to monitor their implementation by states, local jurisdictions, and water

suppliers. Under the SDWA, the Lead and Copper Rule requires PWSs to control lead and

copper levels, mainly through corrosion control and public education. However, although the

SDWA places responsibility on PWSs to manage lead levels, it does not authorize them to
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replace customer-owned portions of LSLs unless certain conditions are met.

A LSL typically consists of two portions: the public portion, owned by the utility, and

the private or customer-owned portion, which connects to the household. Most LSLs were

installed between the late 1800s and 1940s, and the use of lead pipes in PWSs and household

plumbing was banned by the 1986 SDWA amendments (EPA 2022). Despite lead being one

of the most serious drinking water contaminants, identifying LSLs has been challenging due

to limited records and long histories of repairs (EPA 2022, Theising 2019). Therefore, many

PWSs still operate with partially replaced LSLs—where only the utility-owned portion had

been replaced—leaving the customer-owned segment, owned by the property owner, in place

and potentially leaching lead into tap water. This split ownership creates a regulatory blind

spot: utilities are responsible only for the public side, while the unregulated private side

remains a recurring source of health-based SDWA violations. Moreover, utilities are often

restricted from offering financial assistance for private-side infrastructure replacement, leading

to inconsistent and incomplete replacements that undermine overall compliance efforts.

Building upon the SDWA framework, Wisconsin enacted 2017 Act 137 in February 2018

to address lead contamination from customer-owned LSLs and reduce the risk of drinking

water contamination. (River Network 2025). Signed on February 21 and effective the next

day (Wisconsin Legislature 2018), the Act provides legal authority and financial assistance

mechanisms to support full LSL replacement as a form of public infrastructure support. It

authorizes municipalities and utilities—previously restricted—to assist in replacing customer-

owned LSL portions through grants, loans, or both, subject to approval by the Public Service

Commission of Wisconsin. The Act also allows loan repayments to be added as special

charges to property tax bills, reducing implementation costs and encouraging homeowner

participation. Rather than imposing a top-down mandate, it delegates authority to local

governments, consistent with Wisconsin’s decentralized approach to infrastructure governance

(Wisconsin Legislature 2018).

Act 137 can be evaluated from both policy design and economic perspectives. In terms of

a policy design, it reflects a coordinated governance model: local jurisdictions (i.e., cities,

villages, towns) are authorized to implement replacement mandates, while water utilities

can fund financial assistance programs using customer charges collected within their service
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areas (Wisconsin Legislature 2018). These programs require approval from the Public Service

Commission of Wisconsin to ensure consistency, equity, and consumer protection. The Act

stipulates safeguards for fairness and fiscal sustainability, such as requiring uniform grants

or loans within customer classes and capping grants at 50% of customer-side replacement

costs. Economically, this policy addresses a classic coordination failure by internalizing the

externalities of lead exposure: property owners lacked incentives or resources to replace

their lines independently, while utilities faced regulatory and financial barriers to providing

assistance (Switzer and Teodoro 2017, McDonald and Jones 2018). Act 137 mitigated this

challenge by establishing a legal and fiscal pathway for cooperation.

Wisconsin has emerged as a national leader in LSL replacement, removing over 114,000

lead pipes between 1998 and 2023, roughly 26% of the state’s 1998 lead burden (Environmental

Policy Innovation Center, 2024). Still, public health challenges remain. In 2016, the rate

of lead poisoning among children in Wisconsin was 5%, nearly matching Flint, Michigan’s

4.9% rate during its water crisis. Between 1996 and 2016, more than 200,000 children in the

state were diagnosed with lead poisoning (Soll and Leckel, 2018; Wisconsin Department of

Health Services, 2025). Taken together, Wisconsin’s leadership in replacement efforts and its

enactment of Act 137 make the state an ideal case to evaluate the effectiveness of state-level

interventions in improving public water system compliance and reducing SDWA violations.

3 Methodology

We estimate the causal effect of Wisconsin’s 2018 LSL replacement policy on PWS compliance

outcomes using SDID estimator proposed by Arkhangelsky et al. (2021). This approach

generalizes traditional DID and SC methods by flexibly reweighting both units and time

period to relax the parallel trends assumption and improve robustness to latent confounders.

Let Yit denote the observed outcome (number of violations) for unit i ∈ 1, ..., N at time

t ∈ 1, ..., T . Let Wit ∈ 0, 1 denote the treatment indicator, where Wit = 1 if unit i exposed to

treatment at time t and Wit = 0 otherwise.1

1Technical interpretation of Synthetic Difference-in-Difference hereafter closely follows Arkhangelsky et al.
(2021) and Clarke et al. 2024.
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Following the Arkhangelsky et al. (2021), SDID estimates the average treatment effect on

the treated (ATT) τ by solving the weighted two-way fixed effects regression:

(
τ̂ , µ̂, α̂, β̂

)
= arg min

τ,µ,α,β

N∑
i=1

T∑
t=1

(
Yit − µ− αi − βt −Witτ

)2

ω̂iλ̂t, (1)

where ω̂i are unit weights and λ̂t are time weights optimized pre-treatment trajectories and

period, respectively. The flexibility of the procedure allows for shared temporal aggregate

factors given the time-fixed effects βt and unit fixed effect αi (Clarke et al. 2024). Compared

to standard DID, which assumes equal weights across all units and times, SDID introduces a

localization mechanism that downweights units and period that are poorly comparable to the

treated observations (Bertrand et al. 2004; Goodman-Bacon 2021).

The unit weights ω̂i are chosen to minimize the discrepancy between the pre-treatment

outcomes of the treated and control units:

(
ω̂0, ω̂

)
= arg min

ω0∈R,ω∈Ω

Tpre∑
t=1

(
ω0 +

Ncontrol∑
i=1

ωiYit −
1

Ntreated

N∑
i=Ncontrol+1

Yit

)2

+ ζ2Tpre∥ω∥22, (2)

subject to ω ∈ RN
+ , with

∑Ncontrol

i=1 ωi = 1. Here, ω0 is an intercept term allowing for level

shifts and ζ is a regularization parameter to avoid overfitting. Similarly, the time weights λ̂t

are computed by solving

(
λ̂0, λ̂

)
= arg min

λ0∈R,λ∈Λ

Ncontrol∑
i=1

(
λ0 +

Tpre∑
t=1

λtYit −
1

Tpost

T∑
t=T0

Yit

)2

, (3)

subject to λ ∈ RT
+, with

∑Tpre

t=1 λt = 1 2 The objective is to select pre-treatment periods that

2ζ is defined as ζ = (NtreatedTpost)
1/4σ̂, where σ̂2 = (Ncontrol(T0 − 1))−1

∑Ncontrol

i=1

∑T0−1
t=1 (∆it − ∆̄)2 with

∆it = Yit+1 − Yit and ∆̄ the average first difference across control units (Arkhangelsky et al. 2021). In our

study, we adopt the SDID estimation technique developed by Clarke et al. (2024), and it computes λ̂0 and λ̂
by minimizing.

(
λ̂0, λ̂

)
= arg min

λ0∈R,λ∈Λ

Ncontrol∑
i=1

(
λ0 +

Tpre∑
t=1

λtYit −
1

Tpost

T∑
t=T0

Yit

)2

+ ζ2Ncontrol∥λ∥2, (4)

and assumes the very small regularization term with ζ = 1× 10−6σ̂ to ensure the uniquness of time weight
(Clarke et al. 2024).
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best predict post-treatment outcomes for the control units, thereby ensuring the comparability

of the pre-treatment period.

Under the SDID, the ATT estimator τ̂ can be interpreted as a weighted DID estimator:

τ̂ = δ̂treated −
Ncontrol∑

i=1

ω̂δ̂i (5)

where the adjusted outcome differences are

δ̂treated =
1

Ntreated

N∑
i=Ncontrol+1

(
1

Tpost

T∑
t=T0

Yit −
Tpre∑
t=1

λ̂tYit

)
, (6)

and similarly for control units. This framework shows that SDID combines ideas from SC

(matching pre-trends) and DID(differencing out fixed effects), allowing for flexible deviation

from strict parallel trends.

In this paper, we also include the time-varying covariates Xit to improve the validity

of SDID estimates by controlling for the covariates prior to estimating treatment effects.

When the time-varying covariates Xit are included, the estimation needs to adopt a two-step

procedure in which the covariates are first regressed out of the outcome variable (Clarke et al.

2024).

Therefore, we regress Yit on Xit using the following model:

Yit = X ′
itγ + αi + βt + ϵit, (7)

where γ denotes the vector of coefficients associated with the covariates (Clarke et al. 2024).

We then compute residualized outcomes:

Ŷit = Yit −X ′
itγ̂. (8)

The SDID estimation procedure is then applied to the residualized outcomes Ŷit instead

of the raw outcomes Yit. This procedure effectively removes the variation in outcomes

attributable to the covariates, allowing the SDID estimator to focus on the variation associated

with treatment while maintaining the robustness properties of the method. Arkhangelsky
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et al. (2021) note that this residualization step is conceptually distinct from the covariate

matching typically employed in synthetic control methods, and it aligns more closely with

the standard regression adjustment procedure. The details and estimator comparisons are in

the Appendix.

4 Results

4.1 Data

Our analysis uses data from the Safe Drinking Water Information System (EPA-SDWIS 2024)

and the EPA/State Drinking Water Dashboard (EPA 2025a), covering the period from 2014

to 2023. These sources serve as the national databases of record for monitoring compliance

with the SDWA and provide detailed information on PWS activities, including inspections,

violations, and enforcement actions. Data are updated quarterly with a three-month lag,

meaning that information for a given calendar year is finalized and incorporated into the

database by April of the following year (EPA 2025a).

The primary outcome variable is the annual number of SDWA violations at the state

level. Violations are categorized according to EPA standards into health-based violations,

acute health-based violations, monitoring and reporting violations, and public notification

violations (EPA 2025a). Health-based violations include breaches of MCLs, maximum residual

disinfectant levels (MRDLs), or treatment technique (TT) requirements. Acute health-based

violations are a subset of health-based violations that have the potential to cause immediate

illness. Monitoring and reporting violations occur when systems fail to regularly monitor

drinking water quality or fail to submit monitoring results as required. Public notification

violations refer to failures to appropriately notify the public about risks to drinking water

safety (EPA 2025a).

The control group consists of U.S. states that did not implement major new drinking

water regulations or interventions during the study period (Cho 2025). States that undertook

significant policy changes, such as the adoption of lead testing programs or PFAS regulations

between 2014 and 2023, were excluded to ensure comparability. The complete list of excluded

8



states is provided in Appendix Table C1.

To adjust for confounding factors that could simultaneously influence both violation

outcomes and policy adoption, the analysis incorporates several time-varying covariates.

These are the log of real GDP, which captures state-level economic conditions; the population

growth rate, which reflects demographic pressures that could affect water system demand

and operational strain; and the percentage of public water systems that received a site visit

during the year, which serves as a proxy for regulatory oversight intensity. These covariates

were selected based on their theoretical and empirical relevance to water system compliance

dynamics 3.

Table 1-(a) presents descriptive statistics for the pooled sample, Wisconsin as the treated

unit, and the control group of states. Wisconsin exhibits lower economic output compared

to the control group, with an average log real GDP of 10.90 relative to 12.05 in the control

group. Population growth in Wisconsin is also notably slower, at 0.331% compared to 0.710%

in the control group. In contrast, Wisconsin shows a much higher rate of site visits, with

67.11% of its public water systems receiving at least one site visit during the study period,

compared to 39.20% in the control states.

Regarding violation outcomes, Wisconsin initially had a higher number of violations than

the control group. In 2014, the number of violations in Wisconsin was 5,305, while the control

group’s average was 3,044.48. By 2018, the year of policy intervention, Wisconsin’s violations

declined to 4,216, whereas the control group averaged 3,051.32 violations. By 2022, Wisconsin

had reduced its violations further to 2,753, while the control group’s violations increased

to 4,069.56. These descriptive patterns suggest that Wisconsin experienced a reduction in

violations over the study period relative to other states, supporting the need for a formal

causal analysis to quantify the effect of the policy intervention.

4.2 Unit Weight Analysis

Figure 1 presents the estimated unit-specific weights assigned to each control state under

3Real GDP data are from the U.S. Bureau of Economic Analysis (U.S. Bureau of Economic Analysis
2024); population growth data are from the Federal Reserve Bank of St. Louis (Federal Reserve Bank of
St. Louis 2024); and site visit data are obtained from the U.S. Environmental Protection Agency’s State
Drinking Water Dashboard EPA 2025a.
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Figure 1: Estimated Unit Specific Weights. The weights are computed using the SDID and SC
estimator with covariate adjustment, where outcome variables were first residualized on observed covariates
prior to weight estimation, following the two-step procedure described in Clarke et al. (2024).

both the SC and SDID estimators. These weights reflect how much each untreated state

contributes to constructing the counterfactual trend for Wisconsin’s compliance outcomes

in the absence of the policy intervention. Consistent with the properties of the SC method,

the SC weights are highly sparse, with only a few control states receiving non-zero weight.

In particular, Texas and Utah emerge as the dominant contributors, with Texas receiving a

weight of close to 0.5. This sparsity is a defining feature of SC, which seeks to match the

pre-treatment outcome path of the treated unit as closely as possible, typically relying on a

small number of donor units that best replicate the treated unit’s pre-policy trajectory.

In contrast, the SDID estimator yields a markedly different weighting pattern. Under

SDID, the weights are distributed more evenly across a broader set of control units, with no

single state receiving a disproportionate share. All individual weights under SDID remain

below 0.1, and most weights are positive but small. This more diffuse weighting structure

is the result of two key modifications introduced by SDID relative to traditional SC. First,

SDID incorporates regularization when solving for unit weights, discouraging sparsity and
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preventing the over-reliance on a few units (Arkhangelsky et al. 2021). Second, by integrating

a two-way fixed effects structure (including unit fixed effects) into the outcome model, SDID

partially absorbs permanent differences across states, reducing the burden on the weighting

scheme to exactly replicate pre-treatment outcome levels (Arkhangelsky et al. 2021).

The differences in weighting behavior between SC and SDID are especially important in

the context of this study, where we now observe the extended pre-treatment period from 2014

to 2017. While traditional SC relies on matching the pre-treatment levels of the outcome

variable, it may still overfit short-term fluctuations, especially when a small number of donor

units receive disproportionately large weights. In contrast, SDID mitigates this risk by placing

greater emphasis on matching pre-treatment trends and not just levels. By incorporating

both unit and time weights, SDID ensures that donor units with more stable and parallel

trajectories to Wisconsin’s pre-policy trend are given priority, while regularization avoids

overreliance on any single state.

4.3 Synthetic Difference-in-Differences Estimation and Validation

Table 1-(b) presents the estimated ATT for Wisconsin using three methods- SDID, SC, and

traditional DID— under both the covariate-adjusted and unadjusted specifications. The

estimates reveal several important insights into the performance and robustness of these

approaches.

First, the SDID estimates consistently show a significant reduction in violations, with an

ATT of -1200.107 without the covariates and -965.063 with the covariates 4. This robustness

across each specification illustrates a key strength of the SDID estimator: by combining

unit and time weighting with two-way fixed effects, SDID reduces bias from unobserved

confounders and achieves greater stability in settings with differential pre-treatment trends

(Arkhangelsky et al. 2021; Clarke et al. 2024). Moreover, the covariates are incorporated

through a two-step residualization procedure (Equation 8), which allows the treatment effect

estimation to focus on variation not explained by the observed covariates.

In contrast, the SC estimates vary widely depending on whether the covariates are included

4The coefficients of covariates are in Appendix (Table A1).
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Pooled sample Wisconsin Control group

log Real GDP 12.005 10.900 12.050

Population growth (%) 0.696 0.331 0.710

Site Visit (%) 40.270 67.110 39.204

Number of Violations

2014 (T0 − 4) 3131.423 5305 3044.480

2018 (T0) 3096.115 4216 3051.320

2022 (T0 + 4) 4018.923 2753 4069.560

(a) Covariate and outcome means

SDID SC DID

ATT -1200.107∗∗ -965.063∗ -733.17 333.405 -1513.85∗∗∗ -958.246∗

Standard error (537.793) (501.927) (671.171) (1276.643) (548.544) (535.209)

Covariates ✓ ✓ ✓

Time FE ✓ ✓ ✓ ✓ ✓ ✓

State FE ✓ ✓ ✓ ✓

(b) Estimates for average treatment effect on the treated (ATT) on Wisconsin

Table 1: Descriptive Statistics and Estimated Treatment Effects.. We employ the placebo-based
standard error estimator. Placebo treatments in estimation is to control units and compute the distribution of
placebo estimates τ̂p to approximate the sampling variability of the estimator. The variance estimate is given

by V̂placebo(τ̂) = Var(τ̂p), and a (1− α) level confidence interval is contructed as τ̂ ± zα/2

√
V̂placebo(τ̂), where

zα/2 denotes the standard normal critical value (Arkhangelsky et al. 2021, Clarke et al. 2024). Methodological
details of SC and DID are in the Appendix. The standard errors are in parentheses. ∗∗∗, ∗∗, and ∗ indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.
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5. Without the covariates, the SC estimator yields an ATT of -733.17, but this flips to a

large and imprecise positive value (333.405) with the covariate adjustment, accompanied by

a standard error nearly four times that of the SDID estimate. This instability reflects known

limitations of SC when few donor units dominate the synthetic match, especially under noisy

or idiosyncratic pre-treatment trajectories (Abadie et al. 2010, Arkhangelsky et al. 2021).

Because SC solves a constrained optimization problem that selects a sparse set of weights to

closely match outcome levels, it is sensitive to overfitting and poorly suited for controlling

pre-trend divergence unless very close matches exist.

DID estimates remain negative and statistically significant across both specifications

(ATTs of -1513.85 and -958.25), but they come with higher standard errors than SDID. DID’s

reliability is contingent on the validity of the parallel trends assumption, which is questionable

here based on visual evidence from Appendix Figure A1. Violations of this assumption can

bias estimates when treated and control units exhibit divergent trends prior to intervention

(Bertrand et al. 2004; Goodman-Bacon 2021).

Interestingly, the covariate-adjusted SDID and DID estimates are relatively close in

magnitude (-965 vs. -958), but the underlying assumptions differ substantially. SDID does

not assume parallel trends; instead, it optimally reweights both control units and time periods

to match the pre-treatment trajectory of the treated unit. This design allows SDID to

construct a more credible counterfactual in the presence of latent confounders and imperfect

trend alignment (Arkhangelsky et al. 2021).

Figure 2-(a) displays trends in SDWA violations for Wisconsin and the covariate-adjusted

synthetic control group from 2014 to 2023. The vertical dashed line indicates the 2018

policy intervention year. The red dashed line shows the observed violations in Wisconsin,

the black solid line traces the SC estimate, and the black dashed line shows the SDID

counterfactual. The gray bars at the bottom depict the time weights λt used in the SDID

estimator, illustrating the relative importance of each pre-treatment year in constructing the

counterfactual.

These figures complement the estimates in Table 1-(b), where the SDID method con-

5SC does not include unit fixed effects because it aims to replicate the treated unit’s level and trend
using a weighted combination of control units. Including unit fixed effects would absorb level differences,
undermining this matching objective (Abadie et al. 2010).
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(a) Without Covariates
(b) Event Study

Figure 2: Outcome Trends and Time-Specific Weights and Event Study The dashed red line
represents the observed compliance trend in Wisconsin between 2014 and 2023. The solid black line traces
the SDID estimate. The gray bars at the bottom indicate the time weights used in SDID, indicating the
relative importance assigned to each pre-treatment year in constructing the counterfactual trajectory.

sistently yields a statistically significant and negative treatment effect across specifications.

The SDID estimator’s relative robustness and precision stem from its ability to combine unit

and time weighting with two-way fixed effects (Arkhangelsky et al. 2021; Clarke et al. 2024).

Unlike DID, which assumes parallel trends, and SC, which emphasizes level matching, SDID

explicitly focuses on matching pre-treatment trends. This feature is critical in this application.

Time weights play an important role in improving SDID’s credibility. As shown in Figure

2-(a), 2016 and 2017 receive the greatest weight, suggesting that these years were the most

informative for approximating post-treatment outcomes. Earlier years like 2014–2015 received

smaller but non-zero weights. This selective emphasis allows the estimator to focus on periods

with the highest predictive power while down-weighting noisy or structurally atypical years

(Arkhangelsky et al. 2021).

Notably, the SDID control trajectory does not exactly match Wisconsin’s outcome levels

before treatment. This is by design: rather than overfitting to level fluctuations, SDID

prioritizes capturing trend direction and slope—features more predictive of post-intervention

outcomes. As such, the gap between Wisconsin and its SDID control even before 2018 does
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not undermine the estimator’s credibility. Instead, it reflects SDID’s emphasis on trend

alignment over exact matching, and this design ensures that the post-treatment counterfactual

is valid even when treated and control units differ in levels.

Overall, Figure 2-(a) provides compelling visual evidence that violations in Wisconsin

declined substantially following the 2018 policy intervention, and that SDID accurately

captures this effect. Unlike SC, which can be unstable, or DID, which relies on strong

identifying assumptions, SDID offers a robust and flexible framework for causal inference

under imperfect pre-treatment comparability.

To evaluate the credibility of the estimated treatment effect in Wisconsin, we examine

the dynamic effects of Wisconsin’s 2018 policy intervention, we conduct an event study

analysis following the method proposed by Clarke et al. (2024). Figure 2-(b) presents the

estimated treatment effects for each year from 2014 to 2023, using the SDID framework. Each

point estimate reflects the annual difference in SDWA violations between Wisconsin and its

synthetic control, controlling for the observed covariates. The blue diamonds indicate the

point estimates, and the shaded band represents the 95% confidence interval. The vertical

dashed line at 2018 marks the policy intervention year, while the red dashed horizontal line

at zero provides a reference for evaluating the null of no effect. The estimates prior to 2018

are close to zero, supporting the credibility of the identifying assumption that the treated

and control units followed parallel trends in the absence of the policy change. After 2018, the

estimates become increasingly negative, indicating a substantial and statistically significant

reduction in SDWA violations relative to the synthetic control.

This event study is constructed using a two-step procedure. First, the outcomes are

residualized by regressing the outcome variable on the covariates to obtain by Equation

(8). Second, the year-specific treatment effects are estimated by comparing the residualized

outcomes of the treated unit to a weighted average of the control units. The treatment effect

at time t is given by:

τ̂t =
1

Ntreated

Ntreated∑
i=1

(
Ŷit −

T0−1∑
t=1

λ̂tŶit

)
−

Ncontrol∑
i=1

ω̂i

(
Ŷit −

T0−1∑
t=1

λ̂tŶit

)
, (9)

where ω̂i and λ̂t are unit and time weights estimated from the pre-treatment period, T0 is the
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intervention year, and Ntreated is the number of treated units (Clarke et al. 2024). In this

setting, Wisconsin is the only treated unit, and the time weights are optimized to reweight

the pre-treatment path of the treated unit 6.

This dynamic pattern of treatment effects corroborates our main results and provides

further evidence that the 2018 LSL replacement policy had a persistent and growing impact

on regulatory compliance in Wisconsin. Further consideration of robustness, we conduct the

predictive error-based placebo analysis in the Appendix.

4.4 Policy Evaluation Against Environmentally Unaligned States

Political orientation can influence not only the adoption of environmental regulations but

also the strength and consistency with which they are implemented. States with stronger

environmental voting records may possess greater institutional capacity, administrative will,

or citizen-driven oversight, all of which can enhance eco-consciousness (Konisky 2007). To

examine whether the effectiveness of Wisconsin’s policy intervention depends on this political

alignment, we use the LCV score—a widely used measure that quantifies how members

of Congress vote on environmental legislation—as a proxy for each state’s environmental

orientation7. Higher LCV scores indicate greater political support for environmental pro-

tection, while lower scores suggest weaker alignment with environmental goals (League of

Conservation Voters 2025).

To measure the environmental orientation of each state’s political delegation, we collected

the LCV scores for 2018—the year of Wisconsin’s regulatory intervention. Figure 3 presents the

LCV scores for both the Senate and House, with states classified based on whether their scores

are higher or lower than Wisconsin’s 8. Most states fall below Wisconsin’s LCV scores, with

environmentally unaligned states concentrated in the Midwest, South, and Mountain West.

A smaller number of environmentally proactive states—such as Massachusetts, Montana, and

Nevada—have higher LCV scores, reflecting stronger alignment with federal environmental

6Confidence intervals are computed using a cluster bootstrap.
7The LCV score reflects how members of the U.S. Congress—both House and Senate—vote on federal-

level environmental legislation in a given year (League of Conservation Voters 2025). It does not directly
measure state-level environmental policy adoption or implementation, but rather serves as a proxy for the
environmental orientation of a state’s federal political delegation.

8The actual LCV scores are reported in Table A3.
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(a) Senate (b) House

Figure 3: League of Conservation Voters score relative to Wisconsin. Each state is colored based
on its LCV score. States with higher LCV scores than Wisconsin are shown in blue, while those with lower
scores are shown in red. Wisconsin is marked in green. States excluded from the analysis are shown in gray.

policy goals.

To isolate the role of political context more precisely, we restrict the donor pool to

a conservative subset of states with both Senate and House LCV scores below those of

Wisconsin. These environmentally unaligned states are less likely to engage in robust

environmental regulations or possess the administrative capacity to support proactive and

ambitious environmental action. Comparing Wisconsin to this group allows us to examine

whether the policy impact is especially pronounced in less supportive political environments,

where interventions may face more institutional frictions but yield greater marginal returns.

While we already omitted states that enacted major drinking water reforms during the

study period, environmentally proactive states may still have undertaken unobserved or

informal efforts to improve compliance. Including such states could bias the estimated

treatment effects downward, as observed improvements may reflect underlying political will or

institutional quality rather than the absence of formal regulation. By limiting the donor pool

to politically unaligned states, we construct a more conservative and credible counterfactual

to assess the causal impact of Act 137.

Using this environmentally unaligned comparison group, the estimated ATT is -1,035.33

in the covariate-adjusted model, with a statistically significant at the 5% level 9. Compared to

the baseline SDID estimate in Table 1 (-965.21), the adjusted values indicate that Wisconsin’s

9Estimation results and estimated unit specific weights are depicted in Table C4 and Figure C4, respectively.
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(a) Outcome Trends
(b) Event Study

Figure 4: Outcome trends and event study with environmentally unaligned states

intervention appears even more effective when benchmarked against politically unaligned

states. These findings strengthen the interpretation that Act 137 led to actual improvement for

compliance behavior, particularly in institutional settings where such outcomes are typically

less likely.

Figure 4 provides additional support for these conclusions. Panel (a) shows a clear

post-intervention decline in Wisconsin’s trajectory relative to its synthetic control group,

which consists solely of environmentally unaligned states. Panel (b) presents the dynamic

event study estimates, which remain close to zero during the pre-treatment period, indicating

a good pre-treatment fit and suggesting that the post-treatment effects are unlikely to be

driven by pre-existing trends. Following the 2018 intervention, the treatment effects become

increasingly negative, with their magnitude growing over time. This temporal pattern suggests

a sustained and compounding policy impact.

Taken together, these findings indicate that the effectiveness of Wisconsin’s policy inter-

vention was not dependent on political alignment. Rather, the institutional and financial

mechanisms introduced by Act 137—such as enabling full service line replacement and offer-

ing local financing tools—proved effective in overcoming structural and behavioral barriers
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to compliance. The policy delivered significant and measurable improvements, even when

compared to states with weaker environmental orientation. This offers a broader insight:

well-designed, locally implemented environmental policy can achieve substantial compliance

gains, even in politically challenging environments.

5 Discussion and Conclusion

This study provides evidence that targeted policy interventions can lead to significant

improvements in the compliance outcomes among public utilities, even in the presence of

imperfect pre-treatment trends. By applying the SDID estimator, we address concerns

about latent confounding and deviations from parallel trends—common challenges in causal

inference with observational settings. These findings contribute to both the methodological

literature on causal inference and the policy discourse on environmental and public health

regulations.

Methodologically, this study provides empirical support for SDID as a credible alternative

to traditional DID and SC approaches, particularly in settings where pre-treatment com-

parability between treated and control units is imperfect. As emphasized by Arkhangelsky

et al. (2021) and Clarke et al. (2024), SDID enhances robustness by reweighting both units

and time periods while incorporating fixed effects, thereby effectively controlling for both

observable and latent sources of bias. The empirical application presented here demonstrates

that these theoretical advantages translate into practical gains: the resulting estimates are

more precise than those generated by DID or SC alone. This supports the broader view

that there is a need for causal inference frameworks to accommodate flexible counterfactual

construction, rather than relying on rigid assumptions such as strict parallel trends or convex

hull conditions.

The findings also contribute to the literature on regulatory compliance and policy evalu-

ation. While previous studies have documented the challenges in enforcing environmental

and public health regulations, particularly in decentralized settings, this study shows that

carefully designed interventions could lead to sustained improvements in compliance. Notably,

the substantial reduction in violations observed in Wisconsin suggests that regulatory efforts
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targeting technical compliance issues can have immediate and meaningful impacts. This

supports arguments in the policy literature advocating for proactive, rather than purely

punitive, regulatory strategies (Coglianese and Kagan 2007).

Moreover, these results have important implications for the design and evaluation of

future policy initiatives. First, the success of Wisconsin’s program highlights the importance

of targeted, state-level policies tailored to local community conditions, rather than one-size-

fits-all federal mandates. Second, the methodology employed in this study demonstrates the

advantages of adopting more flexible econometric techniques in policy evaluation, particularly

when dealing with complex real-world data that may violate traditional modeling assumptions.

It is critical for both policymakers and researchers to recognize that the parallel-trends

assumption is often implausible and that methodological innovations such as SDID can

substantially improve the credibility of causal impact evaluations.

Several limitations warrant discussion. While SDID substantially relaxes the assumptions

underlying DID and SC, it still relies on the availability of sufficient pre-treatment periods

and appropriate donor units to construct reliable weights. If unobserved shocks occurring

contemporaneously with the intervention differentially affect the treated unit, even SDID

estimates may be biased. Although the placebo tests in this study help mitigate concerns

about such threats, future work could benefit from explicitly modeling potential confounders

or exploring extensions (Athey and Imbens 2017). Furthermore, this analysis focuses on the

aggregate outcomes at the state level; disaggregated analyses by PWS size, ownership type,

or violation category could provide additional insights into the heterogeneity of treatment

effects. Future research may also examine the persistence of the observed compliance

improvements over longer horizons, assessing whether the policy intervention impacts diminish,

stabilize, or even amplify over time. Additionally, comparative analyses across multiple states

implementing similar interventions could provide a deeper understanding of contextual factors

that shape policy effectiveness.

Nevertheless, this study highlights the value of innovative causal inference methods such as

SDID and demonstrates the potential of well-designed policy interventions to improve public

health outcomes. As policymakers grapple with increasingly complex environmental and

public health challenges and with questions about the effectiveness of the policy initiatives
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proposed in response, evidence-based and methodologically rigorous policy evaluations will

be essential for guiding effective governance.
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Appendix

A Comparison Estimators

For reference, we compare our primary estimates from the synthetic difference-in-differences

(SDID) method with those obtained from conventional difference-in-differences (DID) and

synthetic control (SC) estimators. Each method relies on different identifying assumptions

and weighting structures. For technological and methodological explanations, we closely

follow the Arkhangelsky et al. (2021),

The DID estimator is based on a two-way fixed effects model:

(τ̂DID, µ̂, α̂, β̂) = arg min
τ,µ,α,β

{
N∑
i=1

T∑
t=1

(Yit − µ− αi − βt −Witτ)
2

}
(A1)

where Yit is the observed outcome, Wit is an indicator equal to one if unit i is treated at time t,

and αi and βt are unit and time fixed effects. The parameter τ captures the average treatment

effect on the treated (ATT). This specification assumes that, in the absence of treatment,

treated and control units would have followed parallel trends in outcomes (Angrist and

Pischke, 2009). However, this assumption is violated in our observational policy evaluations,

particularly when treated units exhibit different pre-treatment dynamics in Figure C1.

The SC method constructs a weighted average of control units to approximate the

pre-treatment trajectory of the treated unit. Formally, it solves:

(τ̂SC, µ̂, β̂) = argmin
τ,µ,β

{
N∑
i=1

T∑
t=1

(Yit − µ− βt −Witτ)
2 ω̂SC

i

}
, (A2)

Here, αi and βt are unit and time fixed effects, and Wit is a binary treatment indicator.

The SC method constructs a synthetic counterfactual by assigning weights to control units

to match the treated unit’s pre-treatment outcome path subject to ωj ≥ 0 and
∑

j ωj = 1.

The estimated treatment effect is then computed as the post-treatment difference between

the treated unit and its synthetic counterpart. Unlike DID, SC does not rely on the parallel

trends assumption (Abadie et al., 2010), but it assumes that a convex combination of control

units can reproduce the treated unit’s counterfactual. The method is sensitive to the quality
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SDID SC DID

ATT -965.063 333.405 -958.248

log Real GDP -47.512 3240.072 -59.079

Population growth (%) 188.778 -1061.727 290.847

Site Visit (%) -351.430 -1223.387 -395.817

Time FE ✓ ✓ ✓

State FE ✓ ✓

Table A1: Estimated Covariate Coefficients from SDID, SC, and DID Models.

of pre-treatment fit and may perform poorly when the treated unit lies far outside the convex

hull of the donor pool.

The SDID estimator integrates the strengths of DID and SC by incorporating both unit

and time fixed effects and applying data-driven weights to units and periods. The estimator

solves the Equation (1), where ω̂SDID
i and λ̂SDID

t are unit and time weights estimated to

balance treated and control units on pre-treatment trends and to emphasize informative

time periods. As described by Arkhangelsky et al. (2021), SDID improves robustness to

violations of the parallel trends assumption and achieves double robustness: the ATT can be

consistently estimated if either the regression model or the weighting procedure is correctly

specified (Clarke et al., 2024).

Table A1 reports the estimated coefficients on covariates included in the SDID, SC, and

DID models. These covariates—log real GDP, population growth, and site visit rate—are

incorporated to adjust for systematic differences between treated and control units. In the

SDID model, covariate adjustment is implemented through residualization, whereby the

outcome is regressed on covariates, time fixed effects, and unit fixed effects to obtain a

residualized outcome:

Ŷit = Yit −X ′
itγ̂. (8)

Following Kranz (2022), the covariate coefficients γ̂ are estimated in a two-way fixed
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effects regression using only untreated units (i.e., those with Wit = 0) to avoid contamination

from treatment effects:

Yit = X ′
itγ + αi + βt + ϵit for units with Wit = 0. (8’)

The resulting residuals Ŷit are then used in the SDID estimation step, which minimizes

the following weighted least squares objective in Equation 1.

For SC, covariates are incorporated as additional matching targets in the optimization of

unit weights ωj, solving:

min
ω

∥∥∥∥∥X̄treated −
∑
j

ωjX̄
control
j

∥∥∥∥∥
2

. (A3)

In the DID specification, covariates are included directly in the regression equation along

with time and unit fixed effects:

Yit = τ ·Wit +X ′
itγ + αi + βt + εit. (A4)

While ATT remains the primary quantity of interest, reporting the covariate coefficients

in Table A1 provides insight into the adjustment behavior across estimation methods.

B Placebo Analysis Based on Predictive Error Ratios

To further evaluate the credibility of the estimated treatment effect in Wisconsin, we conduct

a placebo-based falsification test using the Ratio of Mean Squared Prediction Error (RMSPE)

(Abadie et al. 2010). Figure B1 presents the results of the placebo test using the absolute value

of the log Ratio of Mean Squared Prediction Error (| log RMSPE|) for Wisconsin compared

to the control states 10. Each black dot represents a control state’s | log RMSPE|, while the

red dashed line indicates Wisconsin’s value. The | log RMSPE| metric captures the relative

change in prediction error between the pre- and post-treatment periods. Specifically, a

| log RMSPE| value close to zero indicates that the model’s predictive accuracy remained

10Figure C2 in Appendix shows the raw differences between observed and synthetic control outcomes for
Wisconsin and placebo states.

3



Figure B1: Log-RMSPE ratios across states. Each black dot represents a control state, and the
red dashed line denotes Wisconsin. The values are computed using the SDID estimator with the covariate
adjustment.

stable before and after the intervention, implying no substantial structural change. In contrast,

a large | log RMSPE| indicates a substantial increase in prediction error after the intervention,

which is consistent with a real underlying shift in outcomes due to the treatment. Thus,

higher | log RMSPE| values are interpreted as evidence of a treatment effect relative to the

counterfactual trajectory.

The measure used in this analysis for each state j is as follows:

∣∣ log RMSPEj

∣∣ = ∣∣∣∣∣ log
(

1
T−(T0−1)

∑T
t=T0

(Yjt − Ŷjt)
2

1
T0−1

∑T0−1
t=1 (Yjt − Ŷjt)2

)∣∣∣∣∣ (B1)

where Yjt represents the observed outcome for state j in year t, specifically the number of

violations. Ŷjt is the counterfactual prediction for state j generated by the SDID estimator.

T0 denotes the treatment year, and T is the last observed year. The numerator captures the

mean squared prediction error in the post-treatment period, while the denominator captures

the mean squared prediction error in the pre-treatment period.

The placebo test is designed to assess the validity of the SDID estimates by examining

whether untreated states exhibit similar post-treatment deviations. If large treatment effects
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were common among untreated units, it would cast doubt on the causal interpretation of

the Wisconsin estimates. However, the figure clearly shows that Wisconsin’s | log RMSPE| is

substantially higher than that of any control state. The values of most control states are

located near zero, indicating minimal post-treatment deviations and reinforcing the stability

of their pre- and post-treatment trajectories. Although a few control states, such as Missouri,

Montana, and Utah, exhibit increased deviations, none show changes comparable to those

observed in Wisconsin.
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C Additional Figures and Tables

State Policy Date Description

Alaska AK H 209 07.28.2016 committee studies rural water and sewer needs

Arizona HB 2049 04.28.2017 expands grant eligibility for small water systems

SB 1459 05.12.2016 assist low-income homeowners with well improvements

California HR2W 09.25.2012 ensuring affordable, accessible, acceptable and safe water

Colorado HB 1306 06.08.2017 funds lead testing in public schools

HB 20-1119 06.29.2020 regulates PFAS storage, disposal, and firefighting foam

SB 20-2018 06.29.2020 establishes PFAS fund for grants, takeback, and assistance

HB 22-1358 06.07.2022 law mandates lead testing in schools, childcare

Connecticut HB 5509 06.14.2018 protects vulnerable groups from sewer foreclosures

Delaware HB 200 07.22.2021 funds clean water projects, prioritizing equity

Illinois SB 550 01.17.2017 mandates lead testing, inventory, and notification

SB 2146 08.23.2019 invests in clean water infrastructure and workforce training

HB 0414 08.06.2021 creates low-income water and sewer assistance program

HB 3739 01.01.2022 mandates full lead pipe replacement and assistance

Indiana HB 1138 05.01.2023 preschools and childcare must test for lead

Maine S.P. 64 06.21.2021 mandates PFAS monitoring, notification, and mitigation

HP 113 07.15.2021 nation’s first comprehensive PFAS product ban enacted

Maryland SB 96 04.30.2019 prohibits tax sales for water bill liens

Michigan HB 4342 10.24.2023 child care centers must label water safety

SB 88 10.24.2023 child care centers must manage lead exposure

Minnesota HF 1 10.21.2020 funds water infrastructure upgrades and protection

HF 2310 05.24.2023 funds PFAS mitigation, bans, and regulations

New HampshireSB 309 07.10.2018 sets PFAS water standards, adds toxicologist

HB 1264 07.23.2020 sets PFAS MCLs, funds programs, expands standards

New Jersey SB 968/A2863 05.11.2021 law mandates lead level notifications quickly

SB 994 09.13.2022 mandates utility affordability

New Mexico SB 1 03.13.2023 facilitates regionalization of water utilities

New York SB S8158 09.06.2016 schools must test for lead, provide aid

VolA-5-5-1 08.26.2020 sets maximum contaminant levels for contaminants
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State Policy Date Description

North Carolina HB 1087 07.01.2020 funds utilities, reviews, mergers, and projects

Ohio HB 512 09.09.2016 strengthens Lead and copper testing requirement

3745-81-84 05.01.2018 revised Lead and Copper Rule

HB 166 11.01.2019 H2Ohio fund for water quality projects

Oregon Water Vision 2019 improvements to our infrastructure and ecosystems

Rhode Island SB 2298 06.24.2022 mandates PFAS testing, standards, and monitoring

SB 0724 06.22.2023 revises PFAS contamination response

Vermont Act 21 05.15.2019 regulation of poly-fluoroalkyl substances

Act 139 07.06.2020 construction grants for public water improvement

Virginia HJ538 02.24.2021 access to clean, potable, and affordable water

HB 1257 01.01.2022 sets maximum contaminant levels

Washington SB 6413 06.07.2018 bans PFAS firefighting foam, mandates disclosure

SB 5135 07.28.2019 regulates priority toxic chemicals in products

Table C1: States removed from analysis because of policy interventions (2014–2023). HF:
House File, HB: House Bill, SB: Senate Bill, PFAS: Perfluoroalkyl and Polyfluoroalkyl Substances. Data
Source: River Network 2025, retrieved on April 29, 2025. Table information are from Cho (2025). We also
excluded D.C. and Hawaii from the control group due to their structural dissimilarity to Wisconsin. D.C., as
a city-state, lacks rural drinking water systems and exhibits administrative characteristics fundamentally
distinct from continental states. Hawaii, being a geographically isolated island state, operates under water
supply and enforcement systems that differ markedly from those on the mainland. Including these units would
violate the synthetic control method’s requirement for comparable untreated units and risk undermining the
credibility of our causal estimates.

Treatment Group Control Group (25)

Wisconsin Alabama, Arkansas, Florida, Georgia, Idaho, Iowa, Kansas, Ken-
tucky, Louisiana, Massachusetts, Mississippi, Missouri, Montana,
Nebraska, Nevada, North Dakota, Oklahoma, Pennsylvania, South
Carolina, South Dakota, Tennessee, Texas, Utah, West Virginia,
Wyoming

Table C2: States assigned to treatment and control groups
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Figure C1: Trends in the Number of Violations for Wisconsin and Control States (2014–2023)
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Figure C2: Estimated treatment-control gaps by state. This figure presents the difference between
observed outcomes and synthetic control outcomes for Wisconsin and each placebo control state from 2014 to
2023. Each subplot corresponds to a different state, showing the trend of the gap between the state’s actual
violations and the synthetic counterfactual, with the vertical dashed line indicating the intervention year
(2018). The trajectory for Wisconsin is highlighted in red.
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LCV Score (2018)

Senate House Above WI (Senate > or House >)

Alabama 43 14

Arkansas 4 4

Florida 36 48 ✓

Georgia 7 26

Idaho 7 10

Iowa 4 27

Kansas 11 2

Kentucky 11 19

Louisiana 7 9

Massachusetts 100 90 ✓

Mississippi 5 22

Missouri 43 24

Montana 54 3 ✓

Nebraska 11 10

Nevada 54 74 ✓

North Dakota 29 3

Oklahoma 11 4

Pennsylvania 46 45 ✓

South Carolina 7 20

South Dakota 11 3

Tennessee 7 23

Texas 11 28

Utah 7 6

West Virginia 25 7

Wyoming 7 0

Wisconsin 50 36

Table C3: League of conservation voters scores by state in 2018. This table presents the 2018
LCV scores for both Senate and House delegations by state. The LCV score measures the percentage of
pro-environment votes cast by each member of Congress based on key environmental legislation identified
annually by the League of Conservation Voters. Scores range from 0 to 100, where 100 indicates full alignment
with environmental protection priorities.
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SDID

ATT -1096.43∗∗ -1035.326∗∗

Standard error (474.694) (431.965)

Covariates ✓

Time FE ✓ ✓

State FE ✓ ✓

Table C4: Estimates for average treatment effect on the treated (ATT) with environmentally
unaligned states. We employ the placebo-based standard error estimator. The standard errors are in
parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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Figure C3: Unit weights from SDID estimation using environmentally unaligned states. This
figure displays the unit-specific weights assigned by the SDID estimator when the donor pool is restricted to
states with lower Senate or House LCV scores than Wisconsin. The weights are relatively evenly distributed
across units, indicating that no single state dominates the construction of the synthetic control. This diffuse
weighting improves robustness and helps mitigate the risk of over-reliance on a small subset of donor states.
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